

ERRATA SHEET FOR FINAL REPORT ENTITLED

STUDY AND ANALYSIS OF REGIONAL AND SITE GEOLOGY RELATED TO SUBSURFACE SALT DISSOLUTION SOURCE OF BRINE CONTAMINATION IN CANADIAN RIVER AND LAKE MEREDITH, NEW MEXICO-TEXAS AND FEASIBILITY OF ALLEVIATION OR CONTROL

CONTRACT NO. 3-CS-50-01580

Upon examination of the final report submitted to the Bureau of Reclamation (Reclamation) by Hydro-Chem, Inc., Reclamation lists the following changes:

Page	18	eighth line of the last paragraph, "50" to "60."
Page	52	fourth line of the last paragraph, "80" to "100-150."
		fifth line of the last paragraph, "3650 feet" to "3674 feet elevation."
Page	53	fifth line of the second paragraph, "1000" to "2500."

STUDY AND ANALYSIS OF REGIONAL AND SITE GEOLOGY RELATED TO SUBSURFACE SALT DISSOLUTION SOURCE OF BRINE CONTAMINATION IN CANADIAN RIVER AND LAKE MEREDITH, NEW MEXICO - TEXAS

AND FEASIBILITY OF ALLEVIATION OR CONTROL

Final Report

Contract No. 3-CS-50-01580

. .

Submitted to

U.S. Bureau of Reclamation 714 South Tyler Amarillo, Texas 79101

Submitted by

Hydro Geo Chem, Inc. 1430 North Sixth Avenue Tucson, Arizona 85705

1 May 1984

LAKE MEREDITH SALINITY STUDY

CONTE	NTS P	ige
	EXECUTIVE SUMMARY.	Í.
	Conclusions	ii Vi
1.	INTRODUCTION	1
	Dumage and Cases of Investigation	7
	Purpose and Scope of Investigation	1 3
	Exploration Studies	4
	Reconnaissance Studies	5
	Dam-Site Investigations	6
	Waste Repository Studies	6
	Salinity Studies	7
•	Satisfy Scuttes	1
2.	GEOLOGY OF THE STUDY AREA	9
	Introduction	0
		13
	Stratigraphy	13
	Paleozoic Section	17
	Triassic and Younger Sediments	19
	Geologic History	19 21
	Subsurface Analysis	23
	Salt Occurrence	23 30
	Salt Dissolution	
	Surficial Expression of Subsidence Features	35
	Structure Mapping in Detailed Study Area	38
	Fracture Mapping	40
3	HYDROLOGY AND GEOCHEMISTRY OF THE STUDY AREA	44
J •		
	Permian-Triassic Groundwater System	44
	Permian Groundwater Flow.	44
	Triassic Groundwater Flow	49
	Shallow Brine Aquifer	52
342	Canadian River Hydrology	54
	Channel Deposits.	54
	Surface-Water Flow.	56
	Chemistry of Groundwater - Surface Water System	65
	Chemistry of Permian Water	65
	Chemistry of Triassic Water	69
	Shallow Brine Aquifer Chemistry	72

4.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Contents - Continued

	Page
Chemistry of Water in the Channel Deposits	72
Surface-Water Chemistry	78
Ute Reservoir	78
River Water	78
Lake Meredith	85
Chemical and Isotopic Determination	
of Salinity Sources	87
Salinity Sources	87
Groundwater Mixing	92
Lake Meredith Water and Salt Budget	95
Water Budget	96
Salt Budget	98
Prediction of Long-Term Salinity Levels	
in Lake Meredith	102
9	
FEASIBILITY OF SALINITY CONTROL	104
Methods of Salinity Control	104
Depressurization Wells	105
Channel Wells	106
Time Effects of Salinity Reduction	107
Model Description	108
Model Inputs and Calibration	112
Model Prediction	
Model Sensitivity	120
Conclusions Based on Model Simulations	
Feasibility of Deep-Well Injection	
Hydraulic Characteristics	124
Conflicts With Other Economic Uses	126
Recommendations	127
REFERENCES	129
APPENDIX A. Water Level Measurements	133
· · · · · · · ·	
APPENDIX B. Water Quality Analyses	142
APPENDIX C. Water Budget Tables	173

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

FIGURES

P	a	g	e

X

中心的关系是正		Nº SI
, 1. -	Location of detailed and general study areas	~ 2
2.	Location of wells listed in Table I	11
3.	Structural elements in the vicinity of the study area	12
4.	Stratigraphic column	14
5.	Limits of salt dissolution in the vicinity of the study area	24
6.	Isopach map of combined Abo-Sangre de Cristo Formations	25
7.	Structure contour map of Pre-cambrian surface	27
8.	Isopach map of San Andres	28
9.	Isopach map of the Artesia Formation	29
10.	Structure contour map of San Andres Formation	31
11.	Structure contour map of Artesia Formation	32
12.	Map showing locations of cross-sections	33
13.	East-West geologic section	34
14.	North-South geologic section through Ute Reservoir	36
15.	North-South geologic section through Canadian River	37
16.	Map showing structural features in the detailed study area	39
17	Aerial view of collapse structure (section 2 of T.13N., R.34E)	41
18.	Rotated blocks of Triassic sediment in collapse structure of Figure 17	41
19.	Aerial view of a strongly defined fracture pattern located south of the Canadian River	41
20.	Location map of wells and measuring points in detailed study area	45

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Page

Figures-Continued

at a transfer	양승규는 가장 전 승규가 가지 않는 것을 알려요. 그는 것은 것이 있는 것은 것이 가지 않는 것이 같이 않는 것이 같이 없다.	
21.	Location map of wells and measuring points in general study area	46
22.	Triassic water-level surface within detailed study area	50
23.	Average yearly flow in Canadian River at Logan, 1927-1981	57
24.	Flow-duration curve for Canadian River at Logan	58
25.	Flow-duration curve for Revuelto Creek	58
26.	Flow-duration curve for Canadian River at state line	58
27.	Flow-duration curve for Canadian River at Tascosa	61
28.	Flow-duration curve for Canadian River at Amarillo	61
29.	Average yearly flow in Canadian River at Amarillo, 1939-1981	62
30.	Stiff diagrams of Permian water near recharge area	66
31.	Stiff diagrams of Permian water near study area	68
32.	Stiff diagrams of Triassic water	71
33.	Stiff diagrams of shallow brine aquifer water	73
34.	Stiff diagrams of water from wells in channel deposits	74
35.	Ranges of chloride concentrations in water from wells in channel deposits	76
36.	Ranges of chloride concentrations in CRMWA piezometers	77
37.	TDS and chloride in river water, October, 1983	79
38.	TDS, chlorides and specific conductance in river water, January, 1984	79
39.	TDS, chlorides and specific conductance in river water, February, 1984	79
40.	Chloride load and mean flow for Canadian River at Tascosa	83

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Page

Figures-Continued

5		
41.	Chloride load and mean flow for Canadian River at Amarillo	84
42.	Chloride measurements in Lake Meredith	86
43.	Bromide/chloride ratios of surface and groundwater	88
44.	Sodium/chloride ratios of surface and grounwater	90
45.	Stable isotopic distributions	91 (
46.	Calculated chloride concentration in Lake Meredith	100
47.	Mixing cell model structure	110
48.	Steady state model results	115
49.	Predicted salinity reduction for 100 percent brine reduction	116
50.	Predicted salinity reduction for 50 percent brine reduction	118
51.	Predicted reduction in salinity from channel pumping wells	119
52.	Results of sensitivity to transfer coefficients	122

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

TABLES

;

Page

-

I.	Log availability from exploration wells in New Mexico	·10
2.	Formation tops from logs of exploration wells in New Mexico	22
3.	Flow-measurement stations in study area	5 9
4.	Summary of Correlations between Canadian River flow at Amarillo and at various upstream stations	64
5.	Summary of gains in Canadian River flow between Ute Dam and Lake Meredith	64
6.	Summary of chemical characteristics of 23 samples of Triassic groundwater in the study area	70
7.	Average chemical characteristics of Canadian River water.	81
8.	Average (1969 to 1982) monthly water and salt budget parameters used to predict long-term chloride concentrations	103
A.1.	Water levels in wells within New Mexico portion of study area	134
B.1.	Selected water-quality analyses of Canadian River and groundwater within and near study area	143
B.2.	Results of water quality determinations, Canadian River water between Ute Dam and Revuelto Creek, Oct. 19 and 20, 1983	151
в.3.	Results of water quality determinations, Canadian River water between Ute Dam and Dunes damsite, Jan. 4 and 5, 1984	152
B.4.	Results of water quality determinations, Canadian River water between Ute Dam and Revuelto Creek, Jan. 31 and Feb. 1, 1984	155
B.5.	Results of water-quality and isotopic analyses from samples collected this study	156
C.1.	Monthly water-budget results for Lake Meredith	174

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

STUDY AND ANALYSIS OF REGIONAL AND SITE GEOLOGY RELATED TO SUBSURFACE SALT DISSOLUTION SOURCE OF BRINE CONTAMINATION IN CANADIAN RIVER AND LAKE MEREDITH AND FEASIBILITY OF ALLEVIATION OR CONTROL NEW MEXICO - TEXAS

EXECUTIVE SUMMARY

The purpose of this study is to identify the geologic and hydrologic controls on the occurrence of brine inflow to the Canadian River below Ute Dam. In addition, the feasibility of brine control, and the long-term effects on Lake Meredith had to be determined.

The occurrence of salt in the subsurface was determined through analysis of well logs and other published information. Isopach and structure-contour maps were drawn for the area, and geologic cross-sections identifying known salt layers were prepared. Field geologic studies concentrated on structure mapping to determine whether surface features could be correlated both with subsurface dissolution and the occurrence of brine.

Hydrologic studies concentrated on the Permian and Triassic formations and the Canadian River. All available flow, chemistry and hydraulic data were collected and analyzed. In addition, several water-quality surveys were conducted within the areas of suspected brine inflow. Water and salt-budgets for Lake Meredith were computed, and this analysis was extended into the future to predict long-term chloride, TDS, and sulfate concentrations in Lake Meredith.

Methods for controlling the brine at its source were evaluated. The feasi-

÷

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

bility and degree of success of each method was tested using a mathematical model that combines the flow of water and the transport of salt in both the channel sediments and in the Canadian River. Two control measures were assessed. The first considered the direct extraction of brine rrom the river channel sediments. The second considered the effect of depressurizing the brine aquifer. A comparison of the control measures was then done based upon the numerical model.

Finally, the suitability of the region for deep well disposal of the brines was assessed. Locations for geophysical surveys were suggested, as well as requirements for deep-well testing.

CONCLUSIONS

The course of the Canadian River downstream of Ute Dam is coincident with, and probably controlled by, the northern (updip) edge of Permian salt dissolution. The dissolution zones are seen on the surface as subtle trends of flexures and collapse features. Subsurface mapping revealed the presence of large quantities of naturally occurring salt beneath the study area. The Permian units were deposited over a local structural high beneath Ute Reservoir. Localized salt dissolution underneath the reservoir has occurred and appears to have been strongly influenced by the structural high that exists in the Precambrian basement rock. The section beneath the reservoir has been especially prone to salt dissolution and related collapse as shown from isopach and structure mapping of the Paleozoic units.

4.4

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Detailed structure mapping did not reveal displacive faulting of the Triassic sediments; however, evidence of collapse was found along the course of the river. A very strong northeast trending fracture set was found throughout the area and appears to have influenced the direction of the river. Most of the flexures also trend northeast, suggesting that the folding is associated with subsurface dissolution along the updip limits of the salt-bearing formations. The subparallel nature of the dissolution front, regional fracture patterns, and flexures suggests that the dissolution of salt has been the major control upon the geologic structure in this region.

A shallow brine aquifer identified in previous studies leaks upward into the channel sediments below Ute Dam. The source of the brines is natural, and has existed prior to the construct on of Ute Dam. The Dam has apparently had little effect on brine flow. The brine enters the channel in two and possibly three areas. These are 1) about one-half mile below Ute Dam, 2) about 3 miles below the dam at the railroad bridge, and 3) possibly in an area one-half mile upstream of the Revuelto Creek confluence. Based on salt-load calculations in the river, and supported by other geochemical and isotopic arguments, approximately 0.6 cfs of deep Permian brine leaks upward into the shallow brine aquifer. Water in this aquifer is a mixture of Permian brines and fresh Triassic water. Approximately 0.9 cfs of this saline water leaks upward into the channel sediment.

River water salt loads, as measured at four locations, indicate that about 70 percent of the salt entering Lake Meredith comes from the New Mexico side of the Canadian River. Most of this salt originates from brine inflow to the chanHYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

nel below Ute Dam. An additional 10 to 15 percent of the salt enters the channel between the Tascosa and Amarillo gages, which may account for the observation of saline water in a deep channel piezometer at the Amarillo gage. The movement of salt down the Canadian River channel is a dynamic process, mostly occurring during high flows when the channel sediments are flushed. At low flows the channel sediments store and retain the salt inflow because the rate of groundwater salt transport is extremely slow in comparison to transport by the river water.

A water budget constructed for Lake Meredith shows that flow in the Canadian River is strongly affected by groundwater losses and bank storage. This was determined by considering flows measured at the Amarillo gage, reservoir diversions, and changes in the reservoir storage, evaporation and precipitation. The reservoir salt budget confirmed that these flow terms were mostly accurate and complete. The salt budget also showed that the chemistry as measured at the Amarillo gage and at the Sanford Dam intake resulted in a correct prediction of Lake Meredith water quality. When the salt and water balances were extended into the future, using average flow and quality parameters and assuming that the lake was maintained at its present volume, the steady-state chloride level in the lake would be 400 milligrams per liter, about 1,500 milligrams per liter for TDS, and 350 milligrams per liter for sulfate.

Two methods of salinity control were considered: the first utilizes a shallow artesian aquifer depressurization well, and the second utilizes dewatering wells in the stream channel sediments placed close to suspected areas of brine inflow. The principle advantage of the first method may be that only one

.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

well need be drilled to effectively drop the hydraulic head below river level. Its disadvantages are high initial cost, possibly very high required pumping rates, and a slow depletion of salt in the river channel sediments. The advantages of dewatering wells in the channel deposits are low cost per well, low pumping rates and a more rapid depletion of salt. Disadvantages are that several wells and special flood protection may be required, and piping costs would be greater.

Currently, brine disposal is envisioned to be into a deep disposal well, completed in the Sangre de Cristo, Abo, or equivalent formation, near the Canadian River channel. The actual disposal of the brine appears to be the greatest problem facing any sort of alleviation program. Information on these deep formations in the area is insufficient to judge whether a suitable disposal horizon exists. Further geophysical and hydrologic studies planned by the Bureau of Reclamation should help determine if a suitable injection horizon exists. HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

RECOMMENDATIONS

The determination of whether aquifer depressurization or channel pumping is the most efficient method for removing brines from the Canadian River is not clear. Simulations of both methods showed results that were similar. However, because the depressurization pumping rate could not be determined, there is much uncertainty in evaluating the results.

Because of the uncertainty in location, number of wells, and pumping rates that must be maintained, the direct removal of brines by pumping in the channel deposits offers more advantages than shallow artesian aquifer depressurization. The question of the number and type of wells required must be studied more thoroughly. The hydraulic characteristics of the channel deposits, especially hydraulic conductivity and specific yield, must be better determined. We recommend that several drive-point wells be installed in the channel below Ute Dam, and that pumping or injection interference tests be run. Several sediment cores should be taken and used for column permeability tests. With this information a simple numerical model of the channel aquifer could be calibrated and the number, spacing, and pumping rates determined.

The evaluation of the shallow brine aquifer should continue. However, we do not believe that another aquifer test should be conducted at TW-1 because of the uncertain well construction. Instead, another well should be drilled, perhaps in concert with a deep test well, and tested in the shallow brine aquifer.

...

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

The amount of piping required for brine disposal would depend on the number of wells, the method of disposal, and location of the disposal area. We recommend that the suitability of deep-well disposal in the Logan area be investigated. Surface geophysics run in the area are the logical first steps in the investigation. If promising zones are identified, then a deep test hole should be drilled. The purpose of the drilling is to obtain as much lithologic and hydrologic information as possible. Therefore adequate provision for coring, hole development, monitoring of hydraulic head with depth, fluid sampling, and hydraulic testing must be made.

***7 i i**

STUDY AND ANALYSIS OF REGIONAL AND SITE GEOLOGY RELATED TO SUBSURFACE SALT DISSOLUTION SOURCE OF BRINE CONTAMINATION IN CANADIAN RIVER AND LAKE MEREDITH AND FEASIBILITY OF ALLEVIATION OR CONTROL NEW MEXICO - TEXAS

CHAPTER I INTRODUCTION

This report contains the results of our study on salt pollution in the Canadian River channel upstream of Lake Meredith, Texas. It has been prepared by the starf of Hydro Geo Chem, Inc., Tucson, Arizona for the Bureau of Reclamation, Southwest Region, under Contract No. 3-CS-50-01580. This report summarizes available information, and presents results of additional data collected during this study with our interpretations, conclusions, and recommendations for pollution abatement and for further study.

The location of the study area, as shown in Figure 1, is in northeastern New Mexico and in the west-Texas Panhandle, along the course of the Canadian River. It has been divided into areas of detailed and general study. The detailed study centers around Logan, New Mexico, and encompasses the region of suspected brine inflow to the Canadian River; the area of general study includes the river reach between Ute Dam and Lake Meredith.

PURPOSE AND SCOPE OF INVESTIGATION

Salt concentrations in Lake Meredith, a water-supply reservoir on the Canadian River north of Amarillo, Texas, have increased steadily since the

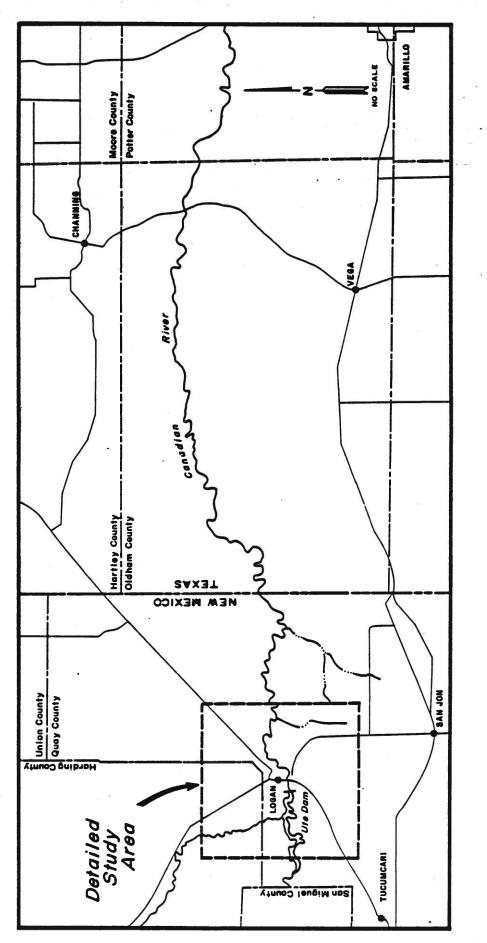


Figure 1. Location of detailed and general study areas

late-1960's and are presently approaching undesirable levels. Sources of salt upstream of the reservoir have been identified as brine seeps from within the Canadian River channel, and most of the salt appears to enter the channel in a several-mile reach downstream of Ute Dam (U.S. Bureau of Reclamation, 1979).

In August, 1983, the Bureau of Reclamation contracted with Hydro Geo Chem, Inc. to study the area downstream of Ute Reservoir and to determine the following aspects of the problem:

- 1. The geologic controls on the occurrence of brine inflow to the channel;
- 2. The hydrogeology of both brine and fresh-water systems that comprise the flow of the Canadian River;
- 3. The correlation between the salt flow in the Canadian River and the rise in salinity in Lake Meredith;
- 4. An evaluation of the feasibility for reducing saline pollution of Lake Meredith.

REVIEW OF PREVIOUS INVESTIGATIONS

Previous investigations to this study were those conducted for petroleum and uranium exploration, hydrologic and geologic reconnaissance studies, dam-site investigations, nuclear waste repository studies, and Canadian River salinity studies.

Exploration Studies.

Almost all subsurface geological information is from interpretation of geophysical and lithologic well logs from petroleum exploration. Few oil or gas wells were drilled within the detailed study area in comparison to the Texas

LAKE MEREDITH SALINITY INVESTIGATION

side of the regional study area. Dobrovolny, Summerson and Bates (1946) were among the first to compile subsurface geologic information for Quay County. They drew detailed geologic cross-sections to the Precambrian surface, including one through the Canadian River channel. Their geologic report and structure-contour map (on the Triassic Chinle Formation), however, was for an area south of the Canadian River. Waneck (1962) presented the geology northwest of the study area near Conchas Dam, but had little subsurface data below the top of the Triassic. Foster and others (1972) compiled a regional analysis of northwestern New Mexico that has been the most useful work for the area. We have refined their work in the detailed study area to include additional deep-well data. Most of the deep-well information was collected from the library at New Mexico Institute of Mining and Technology at Socorro.

In the Texas portion of the study area, petroleum exploration has concentrated on pre-Permian formations. Much of the subsurface information has been compiled by Dutton and others (1979), and Ruppel and Ramondetta (1982).

As part of the National Uranium Resources Evaluation (NURE) program, groundwater, surface water and stream sediment was sampled and analyzed for the Amariilo, Texas NIMS quadrangle (Union Carbide, 1979). This area is at the far eastern edge of our general study area. Stream sediments were sampled and analyzed for uranium in the Tucumcari NIMS quadrangle (Bendix, 1981) but no groundwater sampling program was conducted.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Reconnaissance Studies.

Early geologic studies were not extensively used for this work because all have been incorporated into later works. Four hydrogeologic reports were very useful in the evaluation of the hydraulics and geochemisty of both the Triassic and Permian rocks. Griggs and Hendrickson (1951) compiled well inventories and water-quality data for San Miguel County, which is west of the study area. They reported the water chemistry and depths to water from which an estimate of hydraulic head in of the Permian system in the recharge areas could be made.

Berkstresser and Mourant (1966) reported on the geology and water resources of Quay County. They showed that groundwater flow in the Triassic system was toward the Canadian River, and compiled the only extensive water-level and water-quality tables for the county.

Trauger and Bushman (1964) made a quantitative study of the water resources of the Tucumcari area, concentrating on the Jurassic aquifers. Little information was given about the deeper Triassic rocks in the Tucumcari Basin.

Bassett and Bentley (1983) presented a hydrogeochemical analysis of the deep brine aquifer in Texas. They made use of extensive drill-stem tests to identify an upper-Pennsylvanian - lower-Permian aquifer, estimated its hydraulic potential, and showed it to be continuous with the Permian system in New Mexico.

LAKE MEREDITH SALINITY INVESTIGATION

Dam-Site Investigations.

In accordance with the Canadian River Compact of 1950, which allowed the State of New Mexico to impound up to 200,000 acre-feet of conservation storage below Conchas Dam, the State Engineer's Office conducted several investigations on the suitability of certain parts of the Canadian River channel for an impoundment (Walker and Irwin, 1958). At the Dunes dam site in section 2, T.13 N., R.35 E., a hole was drilled into the Permian Quartermaster Formation. No mention was made of artesian conditions. Triassic collapse features upstream from the hole were identified, and the first published mention was made (to our knowledge) of upstream brine inflow to the channel (Spiegel, 1957a, 1957b).

The impoundment, called Ute Reservoir, was finally built in 1962 upstream of the Dunes site. The Triassic geology of the Ute Reservoir site has been described in a New Mexico State Engineers Report (1961). The Permian was not encountered in shallow drilling at the site. The flow hydraulics in the vicinity of the dam were described by Spiegel (1969). Spiegel (1972b) estimated that about 5 cfs leaks from the dam into the channel.

Waste Repository Studies.

Numerous reports concerned with the evaluation of salt deposits for the storage of nuclear wastes in the Texas Panhandle have been published by the Texas Bureau of Economic Geology (BEG) since 1977. These provide detailed information on the stratigraphy and structure of the Palo Duro, Anadarko and

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Dalhart Basins. Estimates of salt-dissolution zones in New Mexico and dissolution rates based on salt loads in rivers, are given in these reports. Much of this work can be extended into our study area because most of the sediments described are the updip extensions of those found in these basins.

Salinity Studies.

In addition to Spiegel's observations of salt in the Canadian River channel, a detailed water-quality survey of the Canadian River made by the Texas Water Quality Board (1970) concluded that much of the salt in the river was entering the stream below Ute Dam near Logan. In 1972, the Bureau of Reclamation began investiga:ing the problem, drilled several groups of piezometers in the channel deposits between Ute Dam and Lake Meredith, and collected and analyzed water samples (U.S. Bureau of Reclamation, 1975). They determined that the poor water quality was primarily from movement of brines upward through the stratigraphic section and not from surface evaporation. In 1975, several deep wells were drilled near the river south of Logan, that encountered an artesian brine aquifer near the Triassic-Permian contact (U.S. Bureau of Reclamation, 1979).

Electrical resistivity and seismic refraction studies were also conducted in the vicinity in order to delineate the occurrence of salt water at depth (U.S. Bureau of Reclamation, 1976). The conclusions were that a section of very conductive rock (interpreted to be a brine aquifer) could be detected that dips to the west at approximately 4 degrees and is from 150 to 300 feet thick.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

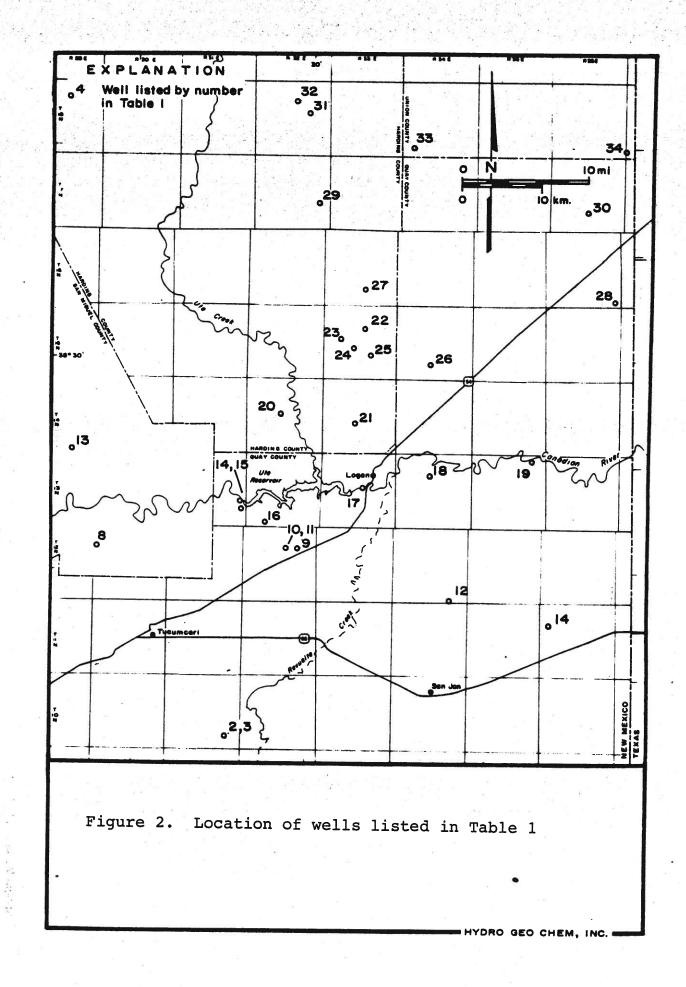
The brine aquifer was interpreted to be laterally discontinuous, however the assumptions inherent to the electrical soundings were violated because of the existence of near-surface inhomogeneities. At the time of the report, more soundings were recommended; however, none have been done. Additional data are needed to fully assess whether the brine is laterally discontinuous.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

CHAPTER II

GEOLOGY OF THE STUDY AREA


INTRODUCTION

This chapter examines the physical setting of the study area in terms of the geologic occurrence of salt and the structural controls upon brine movement. The following stratigraphic descriptions explain formations present in the study area and sets the framework for the following section which describes the occurrence of salt within the detailed study area. Information used in this chapter comes from the published literature, field structure mapping conducted for this study, and analysis of geophysical and geologic well logs. Table 1 list the logs that were used in this analysis. Figure 2 is a location map for the wells listed in the table.

The study area is part of an intracratonic basin along the North American Plate that formed as a result of Paleozoic basement-involved movement (Nicholson, 1960). It lies east of the Sierra Grande Uplift of northeast New Mexico and just south of (and includes parts of) the west-northwest trending Oldham Nose and the Amarillo-Wichita Uplift. These features are shown in Figure 3. Analysis of sedimentation rates by McGookey and Goldstein (1982) shows that the uplift system was periodically active during Mississippian, Pennsylvanian, and Permian times. Major sedimentary basins, such as the Palo Duro Basin and the Tucumcari and Cuervo sub-basins, formed in response to the uplift and its assoc-

Map No.	Location	Well Name	-	New Mexico Nell ID No.	Availabile Logs
1		Chapman No 1	C.T. Shook		Drillers (no 2951)
2	10.31.23	N. Pueblo No 1	Shell Oil	14513	Acoustic, Gamma Caliper
3	10.31.25	N. Pueblo No 2	Shell Oil	14616	Neutron-porosity Gamma, Caliper
4	11.36. 7		L.B. Newby	-	Drillers (no 855)
		Hoover R. No 1	Miami Pet. Co.		SP, Induction
6	12.29.13	Chapell No l	Puretex Oil Co	b. 19324	Induction, Neutron- Porosity, Gamma, Caliper
7	12.29.18	Hoover R. No 1	Miami Pet. Co.	15850	Gamma, Laterolog
8	12.30.7	Chapell No 2	Puretex Oil Co	b. 14890	Neutron-porosity, Gamma, Caliper
9	12.32.11	Ute Anticline 1	National Oil (Co. 25563	Dual-Laterolog, Gamma, Acoustic, Neutron
	12.32.11		0.L. Ledgerwoo		Neutron, Gamma
11		Ulmer No l	S.T. Silverste		Drillers (no 6249)
12	12.32.35	· ·	N.G. Penrose		Drillers (no 6876)
		No 1 Ranch	Marland		Drillers,
14	13.31.24	State No 1	Nucorp Energy		Dual-Laterolog, Micro-Laterolog, Gamma
	13.31.25				Drillers (no 858)
	13.32.32				Gamma, Acoustic
	13.33.15		U.S. Bureau Re		NT TTY OF CALIFICATION
	13.34. 9				Drillers
	13.35.2		New Mex. St. I		Drillers
	14.32.16		Sunray Mid-Col	nt. 2005	Mud-Log, Ganma, Neutron
	14.33.21				Drillers
22	15.33.10		_		SP, Laterolog, Dual- Induction
	15.33.17		Paul Haskins		Gamma, Neutron
	15.33.21	Conley Cain No 1	-		Neutron-Porosity, Gamma, Caliper, Density
		Arthur Cain No 2	·		Gamma, Caliper, Interval-Acoustic
26		State No 1	Powers Wire		Gamma-Gamma Gamma, Caliper
27		1-X Olympic St.		19016	Caliper, Neutron- Porosity, Density, Gamma
28	16.36.36	State "CP" No 1	Humble Oil	13957	Gamma, Gamma-Gamma, SP, Laterolog, Dual- Laterolog

Table 1: Log Availability from Exploration Wells in New Mexico

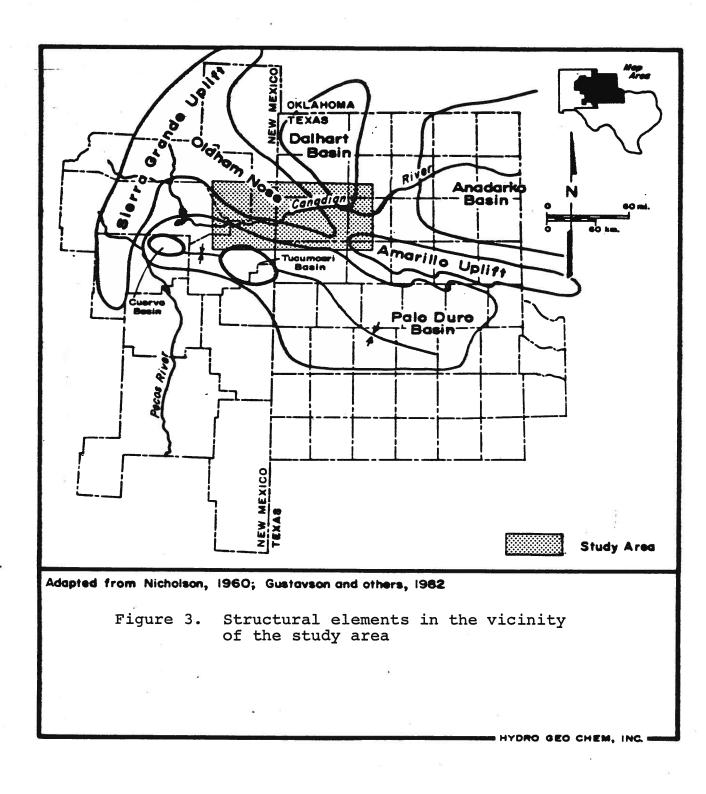


Table 1: Continued

-	Location	Well Name	Operator	New Mexico Well ID No	
29	17.32.24	State "FK" No 1	Amoco Oil	24178	Gamma, Neutron
30	17.36.28	State "CO" No 1	Humble Oil	14899	Gamma, Gamma-Gamma SP, Laterolog, Dual- Laterolog
31	18.32.14	"CM" State No 1	Humble Oil	14900	Gamma, Acoustic SP, Laterolog, Dual- Laterolog
32	18.34.31	"CK" State No 1	Humble Oil	14901	Gamma, Acoustic, Caliper
33	18.36.36	BDCDGU1 836361K	Amoco Oil	23259	Gamma
34	19.34.16	State "EL" 1	Amoco Oil	24126	Gamma, Caliper, Bulk- Density

FINAL REPORT

iated northwest trending block faulting. Regional isopach maps constructed for the region by Foster and others (1972) and Gustavson and others (1982) indicate that many of the sedimentary systems of the Palo Duro basin can be extended into New Mexico along a synclinal trough defined by the Tucumcari and Cuervo basins.

STRATIGRAPHY

1. Paleozoic Section

The Paleozoic section in Quay and Oldham counties, shown in the stratigraphic column (Figure 4), is comprised of the Sangre de Cristo Formation and the Abo, Yeso, San Andres, and Bernal formations. These units lie unconformably upon the Precambrian surface. The unconformity is marked by arkosic sandstones often referred to as the granite wash, and it reflects tectonic uplift and ero-

		NE NEW MEXIC	NEW MEXICO STUDY AREA		PALO DURO BASIN	Z
SYSTEM	SERIES	GROUP		GROUP	FORMATION	General Lithology B Depositional setting
	HOLOCENE				allurium, dune sand Playa	
QUATERNARY	PLEISTOCENE		а С		Tahoka cover sands Tule / Playa Blance	Lacustrine clastics & windblown deposits
TERTIARY	NEOGENE		Ogallala		Ogailaia	Fluvial & locustrine clastics
CRETACEOUS					undiferentiated	Marine shales A limestones
TRIASSIC		DOCKUM		DOCKUM		Fluvial - deltaic & locustrine clastics
					Dewey Lake (Quartermaeter)	
	OCHOA		Alibates?		Alibates	-dan
			*		Salado/Tonsill *	>
92 ta			-		Yates	
2		ARTESIA	Berna!	ARTESIA	seven Rivers *	Î
*	GUADALUPE				Queen/Grayburg	
PERMIAN			San Andres *		* Son Andres	sconna sair, annyarina, red bede, & perifidat dolomite
			*		Glorieta *	
					Upper Clear Fork	s : 5
124		2	Yeso	CLEAR FORK	Tubb	
	LEONARD				Lower Clear Fork	
N.	4 2 1		J.		Red Cave	
				WICHITA		2
	WOLFCAMP		Abo	æ		14 15
	VIRGIL		Sangre de Cristo Maranite wash	CISCO		Shaif B shaif-mercia
	MISSOURI	MAGDALENA		CANYON		carbonate, basinet shale, & deltaic
PENNSYLVANIAN	DES MOINES		Madera	STRAWN		sandstone
	АТОКА			BEND		
	MORROW		91			
	CHESTER					
MISSISSIPPIAN	MERAMEC					Sheif carbonate S chart
15	OSAGE					
ORDOVICIAN				ELLEN- BURGER	2	Shelf dolomite
CAMBRIAN		10000				Shallow marine (7) sandstone
PRE	PRECAMBRIAN					Igneous & metamorphic
* *SALT PRESENT	Figure	4. Strat	Stratigraphic cc	column		UVDDO GEO CHEM INC

Π

1

Π

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

sion of the granitic Precambrian basement. Most, if not all, of the Cambrian to Late Mississippian carbonates thought to be deposited in the region were removed by erosion. Some of these are preserved as carbonates in deeper parts of the Palo Duro Basin (Gustavson and others, 1982).

The Sangre de Cristo and Abo Formations are arkosic sandstones derived from granitic sources located to the north and west of Logan, New Mexico. The sands of the Sangre de Cristo are poorly sorted, angular to subangular, and arkosic. The Abo Formation is more well-sorted than the Sangre de Cristo. Both formations include shale; the shales of the Sangre de Cristo Formation being more silty and sandy than those of the Abo Formation. A combined thickness of 400 to 2000 feet is found in the detailed study area. The thicker sequences are associated with the fault-bounded Tucumcari basin. The distinction between the two formations is not always clear because they grade into each other and are both laterally discontinuous.

The Yeso Formation conformably overlies the Abo and Sangre de Cristo Formations and contains lithologies that range from glauconitic yellowish sandstone to pale red shale with varying amounts of interbedded evaporites such as halite and anhydrite. The sandstone units of the formation are fine-grained, moderately to well-sorted, and often contain evaporites. Texas and New Mexico have developed separate nomenclature for the sandstone units within the Yeso; however, we make no distinction between the units for this report. The total thickness of the Yeso varies between 600 and 1300 feet in the detailed study area, thinning to the north and west.

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

The conformably overlying San Andres Formation contains fine grained sands, evaporites, dolomite, and limestone. The sand content of the formation increases to the north and west of Logan. Because varying quantities of evaporites appear to have been dissolved from the San Andres in the area of detailed study, many of the salt units within the San Andres pinch out or vary considerably in thickness. The formation is between 250 and 1000 feet thick in the detailed study area, the thinner sequences being away from the sedimentary basin.

Overlying the San Andres is the Bernal Formation of the Artesia Group, which we call the Artesia in this report. The dominant lithology is pale salmon pink to yellowish shale and siltstone with traces of halite. Gypsum is also common and is one characteristic of the Artesia Group sediments. The sands are fine grained, well-sorted, and quartzose. Between 175 and 800 feet of Artesia sediments were conformably deposited upon the San Andres Formation in the detailed study area. The formation is thinnest in the area around Logan and thickens toward the Tucumcari and Palo Duro Basins and southward into southeastern New Mexico.

The Alibates dolomite lentil of the Quartermaster Formation overlies the Artesia and is present east of the detailed study area in Texas. It has been described as a very tight limestone that grades to dolomite where it was found in well DH-10 at the Dunes damsite in section 2, T.13 N., R.35 E. (Spiegel, 1972a), but has not been detected on any logs in the area of detailed study.

LAKE MEREDITH SALINITY INVESTIGATION

2. Triassic and Younger Sediments

1

14

Exposed throughout the detailed study area are the Triassic age fluvio-deltaic sands and shales of the Dockum Group. In New Mexico, the Dockum Group has been subdivided in ascending order into the Santa Rosa Sandstone, the Chinle Formation, and the Redonda Formation. In Texas correlative units are called the Tecovas and Trujillo formations. The distinction between the Triassic units is difficult because the sediments are laterally and vertically discontinuous. The best exposures occur along the Canadian River and its tributaries. Presently, between 400 and 1600 feet of Triassic sediments are preserved in the study area. Between 1200 and 1600 feet of sediments were originally deposited in the detailed study area (Foster and others, 1972).

Locally, the lithology of the Triassic rocks consists of discontinuous arkosic sandstones, siltstones, and shales. Conglomeratic units are also found. Large cross-bedded sandstone units are exposed throughout the area and form sedimentary troughs (paleo-channel deposits) that are between 50 and 500 feet in length. These units grade laterally into siltstones and shales. Our analysis of geophysical and lithologic logs show that the entire Triassic section is similar to the exposed sections. Portions of the lower Triassic section appear to have been silicified and are of a higher bulk density than overlying units. Our analysis of gamma logs show that between 15 and 40 percent of the section is comprised of relatively continuous, thick bedded shales, but attempts at correlation of Triassic sands and shales at a regional scale using the well logs and other drill-hole information were speculative at best. Kottlowski (1969) observed that the Triassic section becomes more shale rich to the south and

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

east.

Between 600 and 800 feet of Jurassic and Cretaceous rocks were deposited in the area but have since been removed by erosion (Foster and others,1972). They are present to the west of the area of investigation in San Miguel County. These sediments were a continuation of the sedimentary systems that began in the Triassic.

The Tertiary system is represented north of the study area by the Ogallala Formation of Neogene age. These clastic sediments were eroded from the Rocky Mountains, transported to the Panhandle region by fluvial processes, and deposited in large alluvial fans. Post Ogallala erosion has isolated these fans from their source areas. No Ogallala sediments remain in the vicinity of the Canadian River.

Quaternary deposits in the study area consist of alluvial sands and gravels in the river channels and a few localized active sand dunes. The channel sediments are predominantly fine sands, clays, and gravel lenses. The channel sediments apparently increase in thickness downstream from Ute Dam. Spiegel (1972b) states that they are 100 feet thick at the state line and continue to thicken to the east. However, a series of piezometers drilled by the Bureau of Reclamation and by the Texas Canadian River Municipal Water Authority (CRMWA) were reported to be in river sediments that are 50 feet thick or less. It is possible that the wells encountered large blocks of rock derived from the cliffs adjacent to the river. A veneer of gravels and irregularly preserved caliches can be found in the highlands and terraces above the river channel.

 $\left[\right]$

HYDRO GEO CHEM, INC.

LAKE MEREDITH SALINITY INVESTIGATION

GEOLOGIC HISTORY

The Texas Panhandle region was the site of shallow marine shelf deposition between Cambrian and Late Mississippian time. By early Permian time, tectonic activity created rapidly subsiding marine basins and numerous fault-bounded highlands (Handford and others, 1981). The Sierra Grande Uplift and the Bravo Dome were major sediment sources at various times (Budnik and Smith, 1982) in the area of investigation.

FINAL REPORT

Shelf and shelf margin carbonate depositional systems existed throughout the region by Late Pennsylvanian and persisted through Early and Middle Permian (Wolfcampian to Early Leonardian) time over most of the Panhandle region (Handford and others, 1981). By the end of the Wolfcamp, the uplifts that supplied sediment were submerged by the Permian sea, and the Texas Panhandle was again part of a broad shelf that extended north into the mid-continent. During Leonardian time, evaporitic environments migrated southward into the Texas Panhandle as the marine shelf systems shifted southward (Handford and others, 1981). The study area was then behind the shelf margin for the remainder of the Permian (Budnik and Smith, 1982). A long period of relative stability and arid climatic conditions allowed the accumulation of thick, onlapping evaporitic sediments in the study area. Thus, the evaporite facies are typical of a sabkha environment and contain a mixture of carbonates, halite, gypsum, anhydrite, and very fine grained clastics.

Relatively rapid carbonate deposition in shallow water then led to the formation of carbonate shoals that expanded and coalesced to form broad tidal

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

flats. Wave action during storm tides carried more carbonate sediment onto the tidal flats, eventually building them above normal tidal ranges. Brine pans and evaporite deposits formed on this supratidal surface, intermittently flooded by tidal action or in some cases by groundwater seepage. The salt plain deposits generally grade laterally into continentally derived redbeds. These sediments appear in multiple cycles and are a record of shorter term fluctuations in the sedimentation pattern superimposed on the broad cycle of Permian regression. The Yeso Formation is a record of cyclic sedimentation patterns which were controlled by a delicate dynamic balance among competing processes of basin subsidence, eustatic sea-level variation, clastic sediment supply, and aggradation/progradation of intertidal and supratidal sediments (Presley and McGillis, 1982).

At the end of the Permian, climatic changes and renewed subsidence of the sedimentary basin, both perhaps related to the opening of the Gulf of Mexico, (McGowen and others, 1979), dramatically changed the nature of sediments. Erosion of some of the Permian section prior to deposition of Triassic rocks has occurred regionally. The arid sabkha environment of the Permian gave way to relatively humid, continental environments of the Triassic, and extensive fluvio-deltaic sediments were deposited throughout the region.

The Mesozoic history of the study area is best shown by the Triassic section because the Jurassic and Cretaceous rocks are poorly preserved in the region. The depositional environments were predominantly humid, continental fluvial and deltaic systems that created abrupt lateral and vertical facies changes. During this time, the meteoric circulation of groundwater began to

LAKE MEREDITH SALINITY INVESTIGATION

dissolve underlying evaporites. The Canadian and Pecos river systems formed along the updip edge of the sedimentary basin and were most likely captured by dissolution-caused collapse structures (Gustavson and others, 1982). These patterns of structural deformation remain as the major features in the region today.

SUBSURFACE ANALYSIS

The occurrence of salt in the Yeso, San Andres, and Artesia Formations is controlled by the depositional and diagenetic history of the sedimentary basin. This analysis of the subsurface is designed to illustrate the history of the formations within the detailed study area through the construction of isopach and structure contour maps. It is based upon the well logs listed in Table 1. The formation tops determined from the logs and used for map construction are included in Table 2.

Our lithologic analysis of the available well logs shows that 20 to 40 percent of the three Permian units may contain salt. The updip limits of salt-bearing units have undergone dissolution in the vicinity of Ute Reservoir and rapid lateral thinning of the formations occurs across a Precambrian basement structural high. Within the Artesia, the salt-bearing facies grade updip into undifferentiated sandstones and shales. The underlying San Andres grades from halite to anhydrite and dolomite updip from the Tucumcari basin. The Artesia shows marked thinning associated with collapse. The area of thinning also lies just north of an east-west trending fault zone that has been active

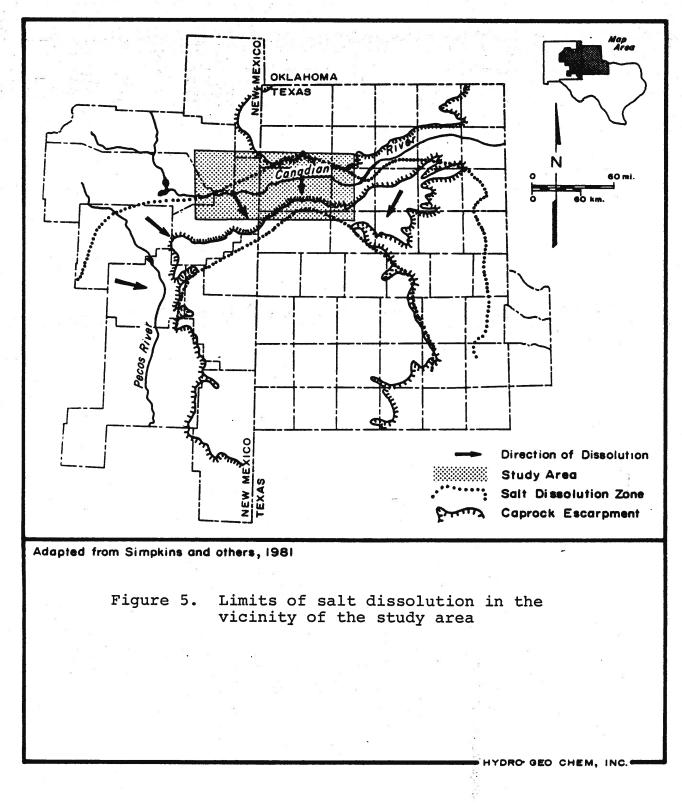
FINAL REPORT

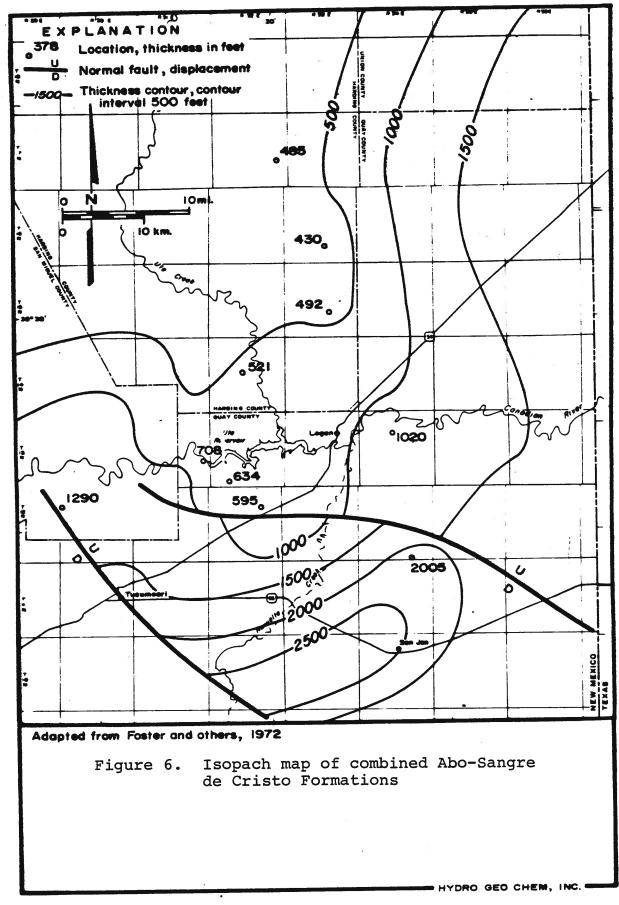
LAKE MEREDITH SALINITY INVESTIGATION

Table 2: Formation Tops from Logs of Exploration Wells in New Mexico

				F	ormatio	on Top	s (ft	below	Elev.	datum)
Map No.	Location	Well Name	Elev. (MSL)	Depth (ft)	Arte- sia	San Andre		Abo		e Pre-
1	9.36.12	Chapman No 1	4060	1050	-		-	-	· -	-
2	10.31.23	N. Pueblo No 1	4116	5058	650	1380	2225	3540	-	-
3	10.31.25	N. Pueblo No 2	4126	2769	823	1558	2530	-	-	-
4	11.36. 7	Endee No l	4070	3503	757	1605	2360	-	-	
5	12.28.14	Hoover R. No l	40 84	6655	1540	1754	2130	3310	-	7530
6	12.29.13	Chapell No 1	4094	49 30	-	1805	2090	3200	-	4510
7	12.29.18	Hoover R. No 2	4119	7077	1642	1846	2710	3480	-	7060
8	12.30. 7	Chapell No 2	4167	5009	1040	1750	2210	2840	3400	4130
9	12.32.11	Ute Anticline 1	4073	3647	890	1078	1813	2755	-	3350
10	12.32.11	Kimes No l	4052	6505	850	1130	1830	27 85	-	3645
11	12.32.11	Ulmer No l	4060	2035	860	1165	1764	-	-	-
12	12.32.35	Tippen No l	4120	6128	740	1170	1910	3230	4100	5285
13	13.29. 3	No 1 Ranch	4092	4990	1640	1925	2595	-	3602	<u> </u>
14	13.31.24	State No 1	3829	3136	574	894	1620	2312	2810	3020
15	13.31.25	Dripping Spgs 1	3790	3011	635	905	1573	2875	-	2985
16	13.32.32	Columbine St. 1	3970	3404	890	1088	1800	2574	3070	3208
17	13.33.15	USBR DH-3	3810	596	514	-	-	-	-	-
18	13.34. 9	Olean No 1 Woods	3915	3930	560	864	1490	2910	3370	3930
19	13.35. 2	N.M. Eng. DH-10	3585	240	150	-		-		-
20	14.32.16	State No 1	3926	2853	652	842	1325	2195	2540	2716
21	14.33.21	Underwood No 1	3940	1370	920	945	-	-	-	-
22	15.33.10	Arthur Cain No 1	4257	2891	820	1110	1600	2359	2688	2851
23	15.33.17	Federal 1-17	4220	1450	752	1058	-	-	-	-
24	15.33.21	Conley Cain No 1			723	1050	1420	-	-	
25	15.33.22	Arthur Cain No 2		1430	725	998	-	-		· · -
26	15.34.28	State No 1	4075	2459	608	925	1390	2240	· 🗕	-
27	16.33.27	1-X Olympic St.	4225	2908	800	1160	1600	2420	2755	2870
28	16.36.36	State "CP" No 1	40 86		398	692	_	-		-
29	17.32.24	State "FK" No 1	4762	2693	1462	1758	2012	2115	-	2600
30	17.36.28	State "CO" No 1	4299		676	966	-	-	-	-
31	18.32.14	"CM" State No 1	4700	2100	1290	1577	1 9 55		-	-
32	18.34.31	"CK" State No 1	4765		1345	1598	-	-	-	-
33	18.36.36	BDCDGU1 836361K	4408	2900	920	1220	1645	2240	· -	• –
34	19.34.16	State "EL" 1	4872	2526	1206	1404	1772	-	-	-

LAKE MEREDITH SALINITY INVESTIGATION


since at least Pennsylvanian time.

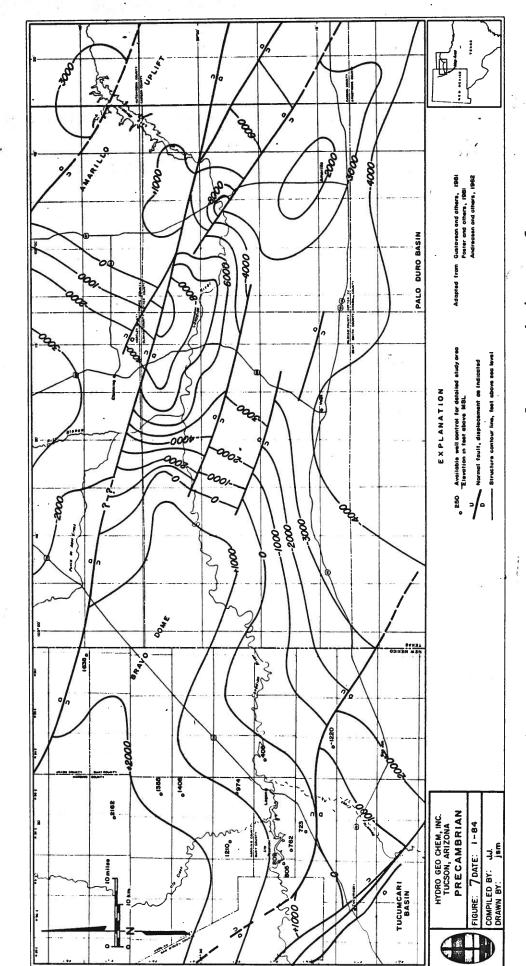

Gravity and magnetic potential field maps are often useful in the analysis of sedimentary basins. We examined the available coverage for the Logan area but found the data not to be useful for the specific area so the data have not been included in this report.

1. Salt Occurrence

The present-day limits of salt dissolution have been mapped by Gustavson and others (1982) and are shown in Figure 5. Although the original extent of salt deposition was near the Texas/Oklahoma border, dissolution along the updip edge of the salt-bearing units has been extensive and now occurs in a broad zone that runs sub-parallel to the Precambrian basement highs that delineate the updip edge of the sedimentary basin. The Canadian River flows across the dissolution zones between Ute Reservoir and Lake Meredith. The dissolution front passes to the south across the western part of the study area (refer to Figure 5).

Construction of an isopach map (Figure 6) of the Sangre de Cristo and Abo Formations is used to show the sedimentary systems that operated during the first stage of the development of the basin. The units are thinner in the vicinity of Ute Reservoir as shown by the North-South zone of thinning that crosses vicinity of Ute Reservoir in Figure 6. We interpret this to be the effect of a Precambrian basement structure that influenced the the sedimentary systems that formed on the Precambrian because they appear to have partially

[


FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

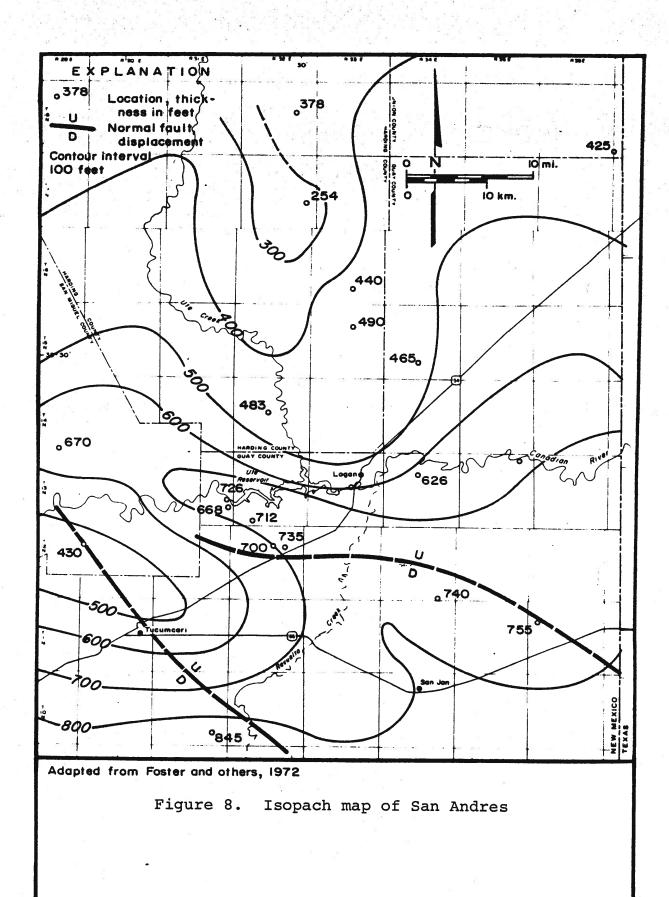
bypassed the area as they filled the developing basin. Faulting south of the reservoir appears to have been influential during the development of the formations as the units greatly thicken across the fault shown in Figure 6. The basin geometry has not drastically changed since late Pennsylvanian to early Permian time.

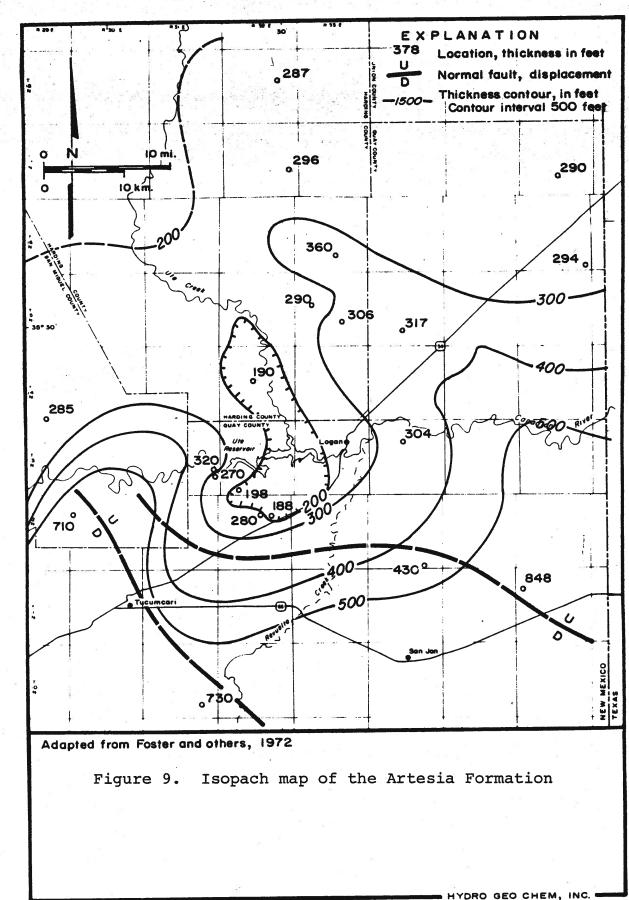
The geometry of the sedimentary basin is defined by the present-day Precambrian basement surface illustrated in Figure 7. Regionally, it can be observed that the Oldham nose is part of a series of uplifts that limit the depth to the basement rock to the north and west of Logan. The well control for the map is sparse, but the area of thinning that is observed in the Sangre de Cristo and Abo Formations correlates to a similarly trending structure in the basement rocks.

Subsequent deposition of the San Andres and Artesia Formations is the last stage of Paleozoic sedimentation, marked by significant quantities of bedded salt, gypsum, and anhydrite. The thickness of the units in the study area is roughly proportional to the amount of salts present in the formations. Both units appear to have been influenced by the presence of the Precambrian structure. The San Andres isopach map (Figure 8) illustrates the effect of the basement structure in an area north of the reservoir. Immediately south of the reservoir there is a northwest trending accumulation of sediments which contain thicker sections of bedded salt than those sediments on the Precambrian basement high. This trend, lying above a fault zone that has been mapped in the basement, may be fault controlled. The Artesia isopach map (Figure 9) shows that thinning is quite pronounced over the area of the reservoir. The southern end

Γ

[

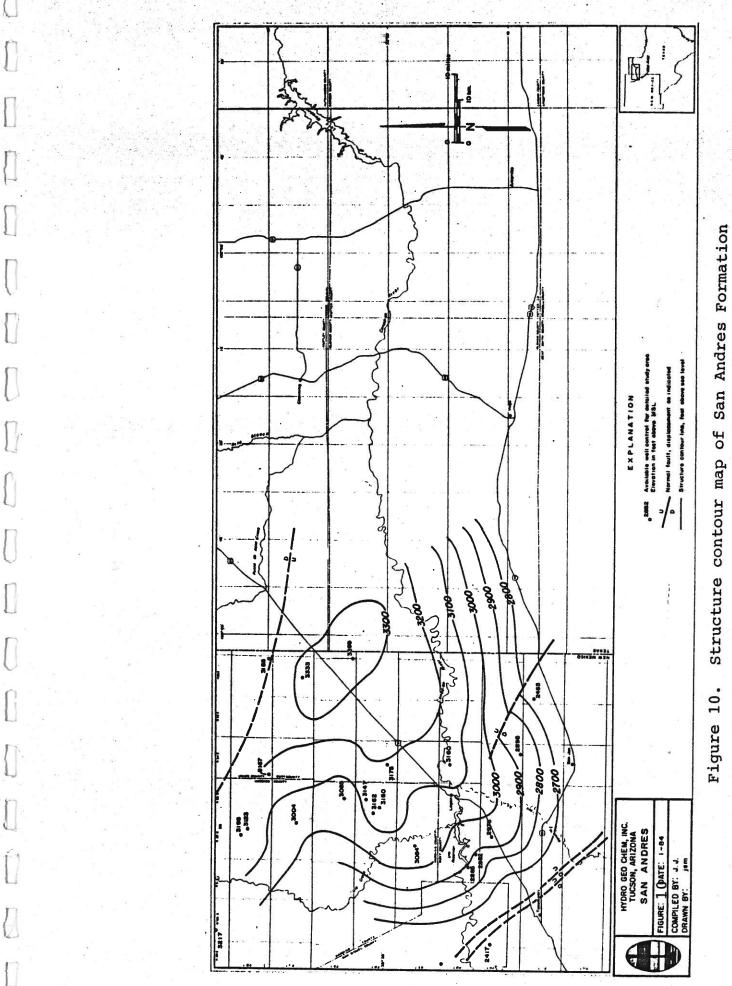

[

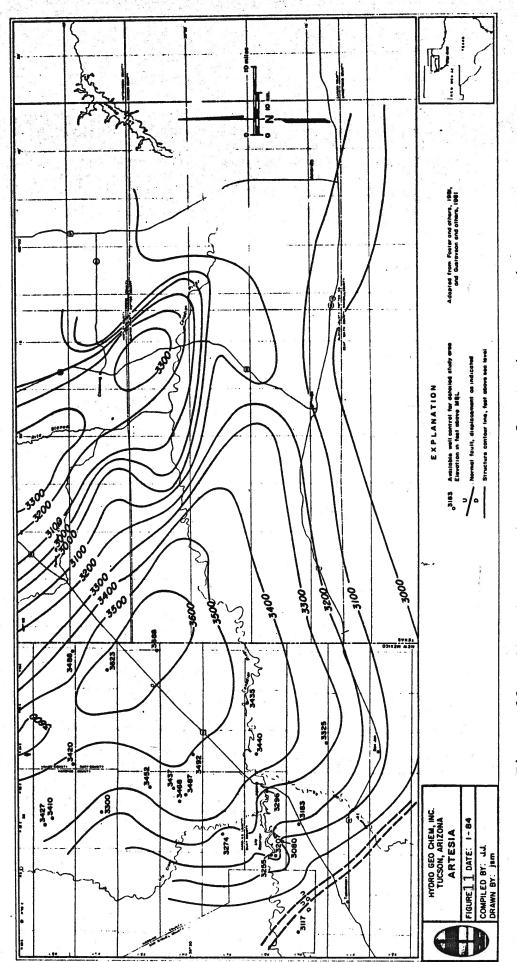

Π

[]

 \int

Structure contour map of Pre-cambrian surface Figure 7.


LAKE MEREDITH SALINITY INVESTIGATION


of the thinning area lies above the northwest trending accumulation within the San Andres Formation. Structure contour maps of the top of both the San Andres (Figure 10) and the Artesia (Figure 11) Formations show a depression in the area of thinning of the Artesia. We believe that this depression is a result of dissolution induced collapse of a large region around Ute Reservoir. This area lies above both a basement fault and Artesia Formation thinning and down-warping.

2. Salt Dissolution

In order to further illustrate the patterns of salt dissolution, three geologic cross-sections were constructed for the study area. The locations of these sections are shown in Figure 12. The identification of salt in the well logs requires that a combination of logs be interpreted. Because bedded salt is soluble and hole enlargement occurs during drilling, caliper logs are often useful. Acoustic logs help differentiate between the evaporites because gypsum and halite have different acoustic wave velocities. Density and neutron logging can also be effective indicators of bedded salt. Neutrons are strongly attenuated and densities are anomalously low in the presence of halite. Gamma logs are generally available for most wells and can be used to identify sedimentary facies as well as salt distibution in a formation. Accurate lithologic logs obtained during the drilling of the wells are generally not available.

The east-west cross-section A-A' (Figure 13) shows that the Artesia decreases in thickness underneath the area between Revuelto Creek and Ute Reservoir. Well number 26092 also shows that part of the section may be down-dropped

Structure contour map of Artesia Formation Figure 11. 1 5

ŀ

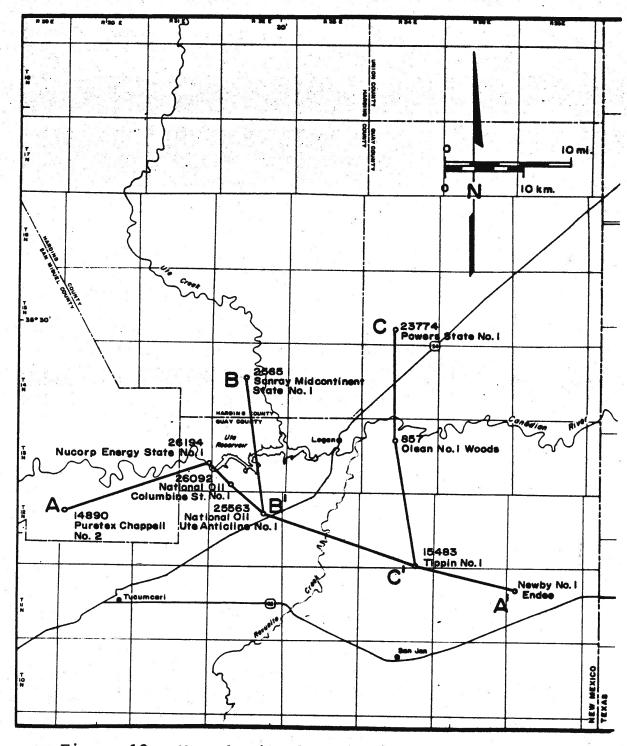


Figure 12. Map showing locations of cross-sections

[

EXPLANATION

^o 14890 Puretex Chappell No. 2

Well number Operator, name

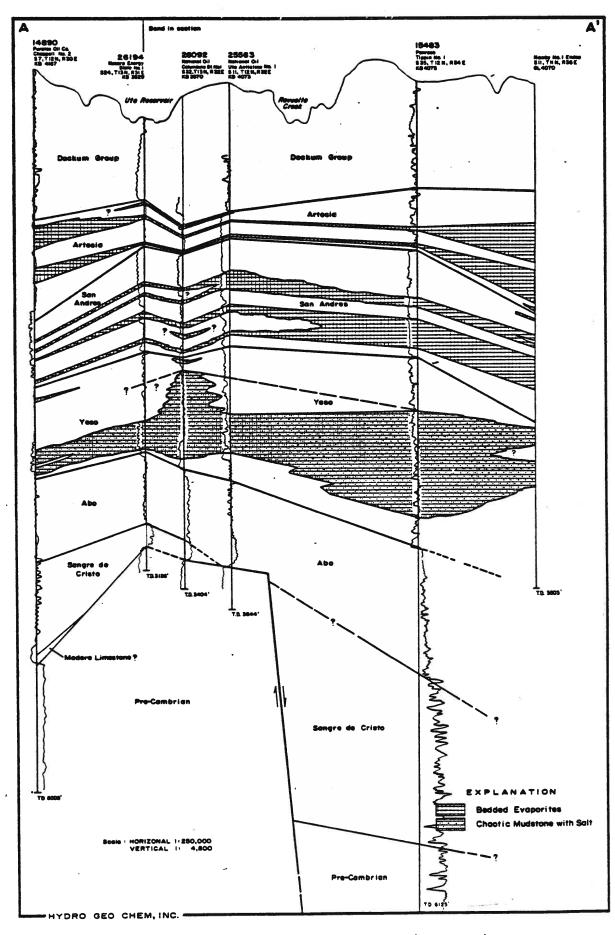
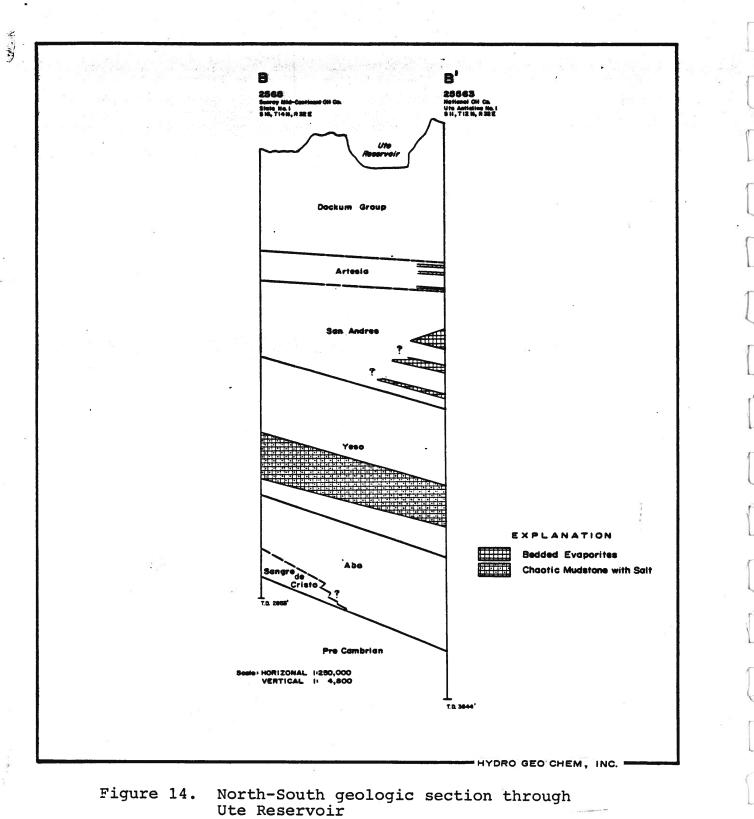
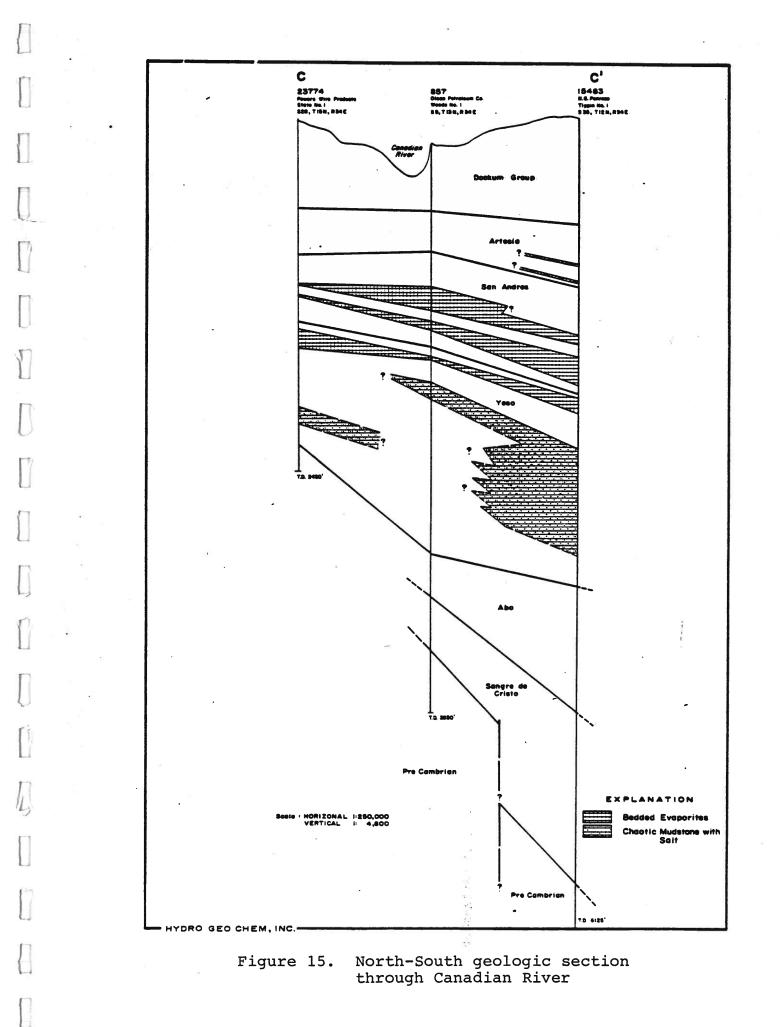


Figure 13. East-West geologic section

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

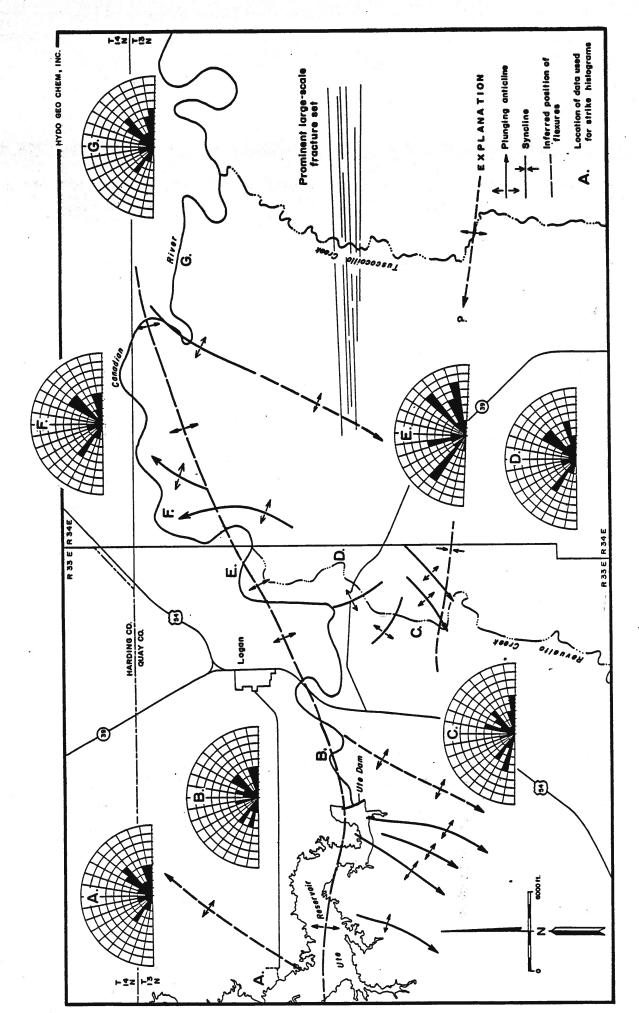

due to increased dissolution of salt. A Precambrian fault, found south of Revuelto Creek (Figure 7), appears to have influenced the Sangre de Cristo and Abo Formation thicknesses and possibly the San Andres. Two types of salt are illustrated which may be either massive salt or chaotic mudstone with salt. The chaotic mudstone facies may represent dissolution residue in some areas. Sections B-B' and C-C' (Figures 14 and 15) are north-south cross-sections that show the updip thinning and decreased salt thicknesses noted for the region. The cross-sections further illustrate the effect of the basement structure upon salt deposition and dissolution.


The area around Ute Reservoir appears to be especially prone to salt dissolution because of a structural high in the Precambrian basement that has influenced all of the Paleozoic sedimentary systems. Thinning is due to both salt dissolution and to the normal variation in stratigraphic thickness over a structural high.

SURFICIAL EXPRESSION OF SUBSIDENCE FEATURES

1

Within the detailed study area we attempted to identify faults, sinkholes, fracture zones or other features of the exposed Dockum Group that may be evidence of subsidence or collapse and may also act as conduits for the upward leakage of brine. The visible geologic structure in the area shows that the regional tectonic history has been quiet. Flexures rarely exhibit dips greater than 5 to 10 degrees, and no faults were found. An east-west trending anticline was mapped along the Canadian River in the area of Ute Reservoir that runs sub-


LAKE MEREDITH SALINITY INVESTIGATION

parallel to the dissolution fronts mapped in the subsurface. Northeast trending flexures and fracture zones have been mapped that may also have formed in response to dissolution. The observable structures are believed to be primarily controlled by the dissolution of salt units in the underlying Artesia and San Andres formations.

We have used two lines of evidence to identify the subsurface features from surface expressions. Structure mapping and air photo analysis show the patterns of folds and depressions. Then, in order to examine the subtle structures in greater detail, fracture orientation data were collected at numerous locations over the detailed study area. Analysis of the fracture data shows that a regional fracture pattern exists in the area. Localized variations and general trends of individual fracture sets have been found and can be related to dissolution.

1. Structure Mapping in Detailed Study Area

Two major structural trends were observed during mapping of the detailed study area. Broad, northeast trending flexures that plunge 5-10 degrees southwest occur south of the Canadian River (Figure 16). North of the river, the flexures appear to plunge northeast. The best exposures are found to the south where the flexures plunge southwest. Revuelto and Tuscocoillo creeks run subparallel to the axial trends of the flexures. An east-west trending flexure has also been mapped along the Canadian River that defines the reversal of the plunge of the flexures. Both trends are evident from analysis of 1:24000 scale aerial photos.

T

L

Figure 16. Map showing structural features in the detailed study area

.

Sec. 14.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

From aerial photographs and low-level aerial observations, we have identified a general grouping of depressions that runs east-west through Logan and along the Canadian River. The trend of the depressions and the mapped flexure are parallel to the subsurface dissolution fronts that have been identified in the area. Follow-up field investigation has confirmed the existence of collapse structures along the river. Rotated blocks of Triassic sandstone were found in a circular collapse structure (section 2, T.13 N., R.34 E.) that is bisected by a northeast trending fracture zone traceable on the surface for 1-2 miles (photographs, Figures 17 and 18). Another collapse feature is suspected in section 6, T.13 N., R.34 E., that lies along the trend of depressions noted in the detailed study area; a large unit of conglomerate appears to be downdropped (without rotation) approximately 50 to 100 feet, and the density of fractures exposed along the river increases significantly in the vicinity. Between Ute Reservoir and the Highway 54 bridge, salt dissolution controlled collapse features are not as evident. However, the fracture patterns there become more chaotic.

2. Fracture Mapping

Fracture orientation data were collected throughout the detailed study area in order to examine the regional fracture patterns and to provide further structural information. The majority of the fractures were near-vertical, spaced between 6 inches and 3 feet apart, and showed little evidence of displacement. Dilatant fractures, filled with a fine-grained sand and often with a calcareous cement, were found throughout the detailed study area. No preferred orientation was observed for the filled cracks.

Figure /8: Photo showing rotated blocks of Tri-assic sediment in collapse-structure of Figure /7.

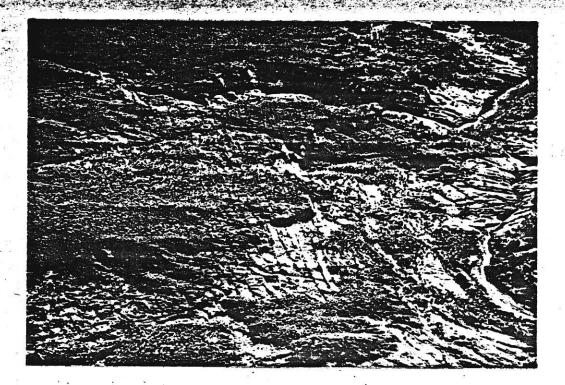


Figure /9: Photo showing aerial view of strongly defined fracture located south of the Canadian River.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Regionally, the fracture patterns are relatively consistent throughout the area. Four major sets can be identified that trend N50W-N70W, N30W-N10W, N30E-N50E, and N70E-N90E. Rose diagrams of fracture orientation have been constructed for subregions of the map area (Figure 16) to demonstrate the spatial variation of orientations. The northeast set is oriented along the same direction as the dominant trend of the flexures mapped on the surface, while the east-west set corresponds to the general trend of the salt dissolution fronts mapped in the subsurface. The N50W-N70W and the N30E-N50E fracture sets appear to control the orientation of the Canadian River; the river often takes turns in these two directions. The N30W-N10W set controls a few minor drainages along the axis of the anticline that runs along the river.

Within the detailed study area, folding is developed in northeast and eastwest directions. The eastwest trend appears to have developed in response to the broad salt dissolution fronts in the subsurface. The observed folding is relatively minor, and most of the associated fractures run subparallel to the front. These observations imply that the regional dissolution is a primary force in the structural development of the area. Comparison of the rosettes of fracture strike direction shows the east-west fractures to shift slightly in orientation with the direction of the river.

The best developed fracture sets are oriented parallel and perpendicular to the northeast trending flexures. They have been observed regionally (Stearns, 1972) and may be tectonic in origin. These fracture sets appear to have influenced the salt dissolution front which has led to localized dissolution and collapse, especially along the northeast direction. The course of Revuelto

LAKE MEREDITH SALINITY INVESTIGATION

Creek and part of the Canadian River appear to be controlled by a northeast trending fracture system in the area just downriver of Ute Reservoir. No displacement of Triassic sandstones could be found. South of the river, an extremely well-pronounced set of east-west trending fractures were found (photograph, Figure 19). These occur between the river and a linear east-west trend defined by upper Rana Canyon and flexures mapped in the upper sections of Revuelto and Tuscocoillo creeks.

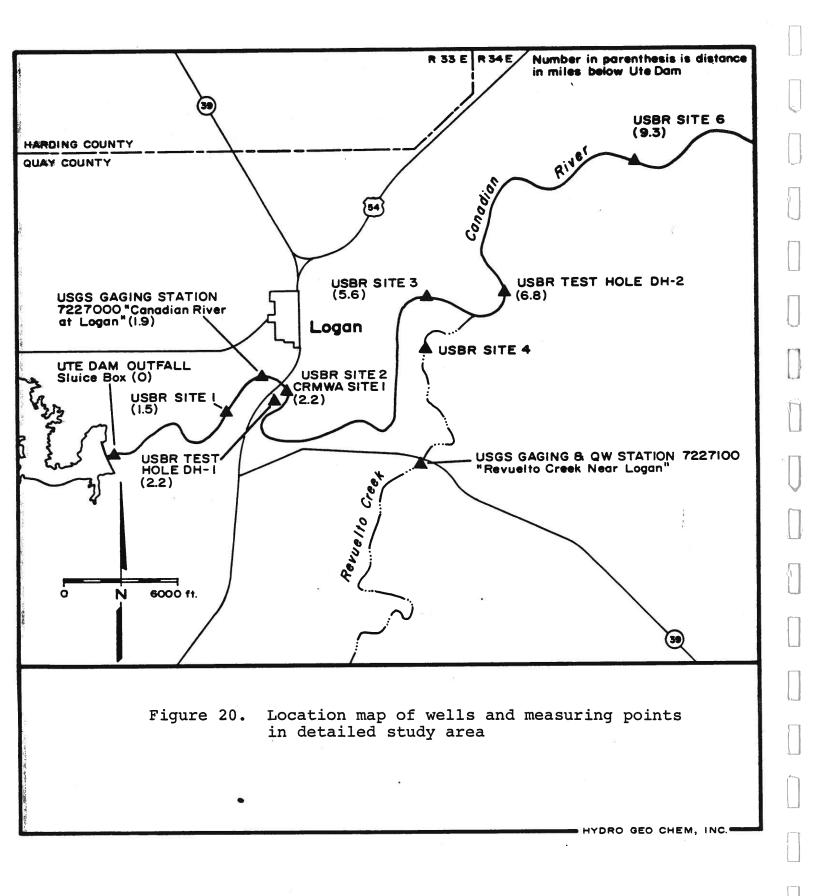
Dilational fractures found throughout the area are now filled with a calcite cement. These are widespread, found in many orientations, and are often seen along anticlinal axes. The origin of the calcareous cement has not been established, but the existence of the open cracks indicates that dilatant stresses have been an influence in the area and are likely to have enhanced vertical fluid movement.

FINAL REPORT

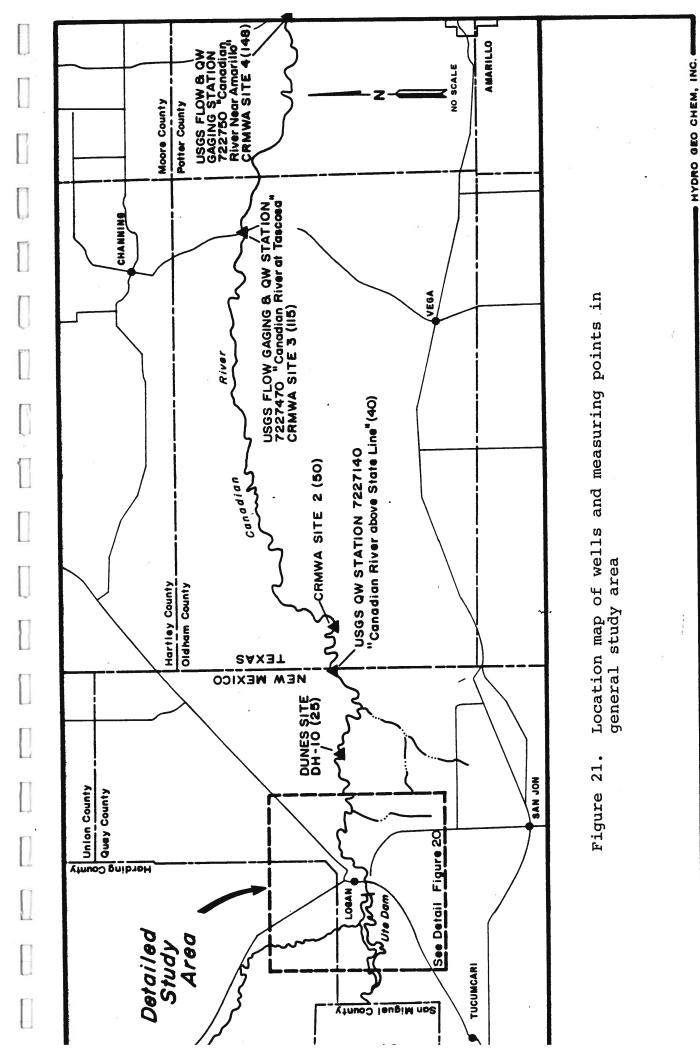
LAKE MEREDITH SALINITY INVESTIGATION

CHAPTER III

HYDROLOGY AND GEOCHEMISTRY OF THE STUDY AREA


This chapter is divided into discussions of the hydraulics of flow in the Permian - Triassic groundwater system, the hydrology of the channel deposits, the Canadian River flow, and the chemistry of these flow components. The degree of mixing is determined using geochemical and isotopic data. Lastly, a water and salt balance for Lake Meredith is presented.

Most data used in this chapter are tabulated in the appendices. Locations of measuring points, piezometers, and wells in the detailed study area are shown in Figure 20. Locations of the measuring points in the general study area are shown in Figure 21


PERMIAN-TRIASSIC GROUNDWATER SYSTEM

1. Permian Groundwater Flow

Because of depth, poor water yield and quality, no water wells tap Permian formations within the study area. The Permian recharge area is about 100 miles west of Logan, along the Sangre de Cristo Uplift (see Figure 3). Wells in this region are at elevations of 6500 to 7000 feet, and water levels are mostly greater than 300 feet below land surface (Griggs and Hendrickson, 1951). The wells are mainly in the San Andres and Yeso formations and yields are generally small.

t

LAKE MEREDITH SALINITY INVESTIGATION

Going eastward, down-dip, toward the study area, the Permian becomes thicker, with a corresponding decline in water yield and quality. Two oil or gas test wells drilled near the study area provide information of the hydrology of the Permian in this area. The Ray No. 1 Hoover well, in section 30, T.11 N., R.28 E., 35 miles southwest of Logan, reportedly had a 1000 qpm artesian flow from the Yeso (Berkstresser and Mourant, 1966). Surface elevation is about 4800 feet. The hydraulic gradient between the Uplift and this well is probably about 15 feet per mile. The permeability of the Permian in this area is very high to cause such a large flow rate, and is probably due to carbonate dissolution, which has been observed in nearby Santa Rosa and along the Pecos River (Kelley, 1972). The Dripping Springs well, located about 12 miles west of Logan in section 25, T.13 N., R.31 E., along the south bank of the Canadian River, was drilled to Precambrian in 1918. We observed in September, 1983, that this well also flows at the surface (about 3800 feet elevation). The unregulated flow rate was less than 100 milliliters per minute of brine; it has probably been flowing for many years. If the original hydraulic head was near land surface, then the hydraulic gradient from the Sangre de Cristo Uplift was about 18 feet per mile.

No further hydraulic information exists on the Permian in the New Mexico portion of the study area. In the Panhandle of Texas, numerous drill-stem tests from oil and gas holes have been analyzed by Bassett and Bentley (1983). The authors identify a hydrologically combined lower Permian and Pennsylvanian system, called the Wolfcamp, separated from shallower aquifers by hundreds of feet of bedded salt. Permian water from New Mexico, described above, is assumed by Bassett and Bentley to be connected to this Wolfcamp aquifer. The hydraulic

FINAL REPORT

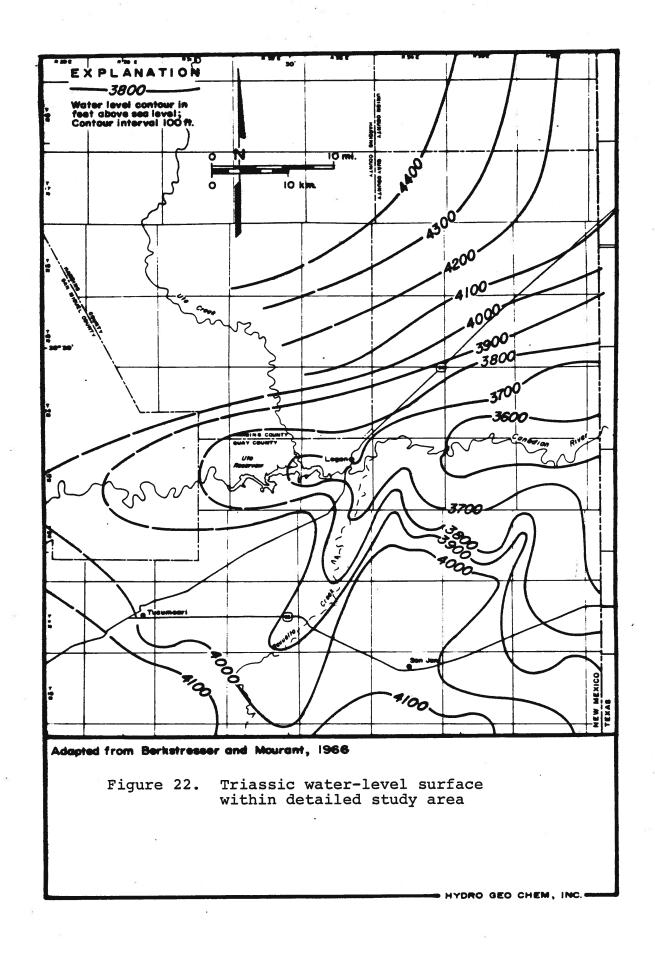
LAKE MEREDITH SALINITY INVESTIGATION

gradient is eastward at about 17 feet per mile. The highest measured hydraulic head was about 2800 feet elevation in mid-Oldham County, Texas, which was the farthest west that the authors considered. The hydraulic gradient between the Ray No. 1 Hoover well and mid-Oldham County is about 18 feet per mile. The permeability of the system was estimated by the authors to be on the order of 10^{-3} ft/day, which is consistent with its lithology and depth of burial. The eventual discharge area for this Permian aquifer is probably as salt springs along and east of the caprock escarpment in the east Texas Panhandle.

Along the Canadian River downstream from Tascosa, Texas, the Permian Quartermaster Formation is exposed. Several flowing wells near the river are probably completed in these rocks. We have no water quality, geologic, or well construction information for these wells. Because the hydraulic potential of the lower Permian Wolfcamp aquifer is hundreds of feet below land surface in Texas (Bassett and Bentley, 1983), the source of the flowing water from these wells is probably from a fairly shallow circulation system.

In summary, the Permian groundwater flows eastwardly at a fairly even gradient between 15 and 20 feet per mile from the Sangre de Cristo Uplift to Texas. Heads are above land surface in the New Mexico portion of the study area, but because the hydraulic gradient is much steeper than the land surface gradient, heads are far below land surface in Texas. The permeability of the Permian rocks is generally low but may locally be very high due to fractures and dissolution. This is probably the case in the area of the Ray No. 1 Hoover well, and has even been noted deep in the Palo Duro Basin in Texas.

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITE


LAKE MEREDITH SALINITY INVESTIGATION

2. Triassic Groundwater Flow

The Triassic system in the study area is divided into the Santa Rosa Sandstone, Chinle and Redonda formations. It is separated from the salt-prone Permian rocks by the shales and mudstones of the Artesia Group. Most of the available hydrologic information for the Triassic is from Berkstresser and Mourant (1966), who performed the majority of the water-level and water-quality measurements. In Texas few published data are available on Triassic water wells within the general study area because most potable water is utilized from the overlying Ogallala aquifer.

Figure 22 is a map of the Triassic water-level surface within the detailed study area. These water levels are tabulated in Appendix A, Table A.1. Most of the Triassic flow within this area is toward the Canadian River. The topography and surface drainages are seen to strongly influence water levels, especially south of the river. The Canadian River, Revuelto Creek, and Rana Canyon are apparent discharge areas for the Triassic. The shape of the surface shows that much of the recharge to the Triassic is derived locally. Several groundwater mounds are evident between the streams, some of which may be due to irrigation recharge from the Tucumcari Project. Contours are smoother north of the river because data are fewer and because the Triassic becomes buried under dune sand and the Ogallala Formation, thus reducing the influence of surface features.

Transmissivity of the Triassic aquifer has not been measured within the study area. Hydraulic conductivity has been estimated by Bassett and Bentley (1983) to range from 0.25 and 2.5 ft/day. Because the Triassic is usually poor-

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

ly sorted, well-cemented, shale-rich, and highly fractured, a 10-fold variation in hydraulic conductivity in the area is reasonable and probably conservative. Well records (Griggs and Hendrickson, 1951; Berkstresser and Mourant, 1966) indicate that the Triassic has typically low water yields. Estimates of specific capacity based on these records range from about 0.01 gpm/ft to 0.5 gpm/ft. The saturated thickness of the Triassic aquifer is unknown because both the lower Triassic and upper Permian are shale-rich. Logs of wells DH-10 (Spiegel, 1972b), DH-1, DH-2 and DH-3 (unpublished records from U.S. Bureau of Reclamation) indicate that thickness is from 150 to 300 feet. We estimate that Triassic transmissivity near the Canadian River averages about 300 ft²/day.

The amount of water flowing into the Canadian River from the Triassic aquifer can be calculated by

Q = TIL

where Q is flow, T is transmissivity, I is hydraulic gradient, and L is stream length. The average hydraulic gradient north of the river is about 40 feet/mile; south of the river it is extremely variable but probably averages 20 ft/mile. Using a transmissivity of 300 ft^2/day , the calculated discharge from the Triassic into the Canadian River is 0.15 cfs per stream mile, or a total of about 5 cfs between Ute Dam and the state line. The heterogeneity of the rocks, thickness variations, and changes in hydraulic gradient probably cause this inflow to occur unevenly along the channel. For example, because of greater saturated thickness, more discharge to the river would be expected near Logan than at the state line. We observed on several occasions that flow in the river increased about 1 cfs near the Highway 54 bridge. In Texas, as the Triassic thins through erosion and becomes more shale-rich, much less water is conducted

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

to the river. In addition, the water-level gradient appears to decrease eastwardly toward the state line. Therefore, we believe that most groundwater inflow from the Triassic occurs within the New Mexico portion of the study area.

3. Shallow Brine Aquifer

Wells drilled by the Bureau of Reclamation south of Logan along the banks of the Canadian River into lower Triassic and upper Permian rocks encountered a sand - gravel aquifer that flowed saline to brackish water at the surface. These wells were drilled to ascertain the existance of such an artesian reservoir, based on the belief that brine discharge to the river was occurring in the area, and on the results of a surface resistivity survey (U.S. Bureau of Reclamation, 1979). No mention of artesian water or brine is made in other logs from wells in the vicinity. The New Mexico State Engineers office drilled a test hole (DH-10) into the Permian Quartermaster Formation (stratigraphically above the Artesia) about 20 miles downstream from Logan, but no mention was made of encountering either artesian flow or saline water (unpublished drilling records from New Mexico State Engineers office; Walker and Irwin, 1958).

Drilling records and geophysical logs of these wells (furnished by Bureau of Reclamation) indicate that the top of the aquifer is a shale layer in the lower Triassic. It is probably bounded on the bottom by shale near the top of the Artesia Group, with a saturated thickness of about 80 feet. The hydraulic head appears to be a few feet above river level, about 3674 feet (unpublished records from Bureau of Reclamation). This newly-identified aquifer is below and appears to be isolated from the Triassic aquifer previously discussed. Its

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

location in the stratigraphic section above the San Andres and Yeso formations, known artesian brine aquifers, tends to isolate the layer from below. Thus we name it the shallow brine aquifer. The hydraulic head in this aquifer has not been measured but from estimates given by the Bureau of Reclamation it is probably similar to that in the Triassic aquifer in the vicinity. The head is higher than that in the river deposits. It is also possible that the head in the Permian brine aquifer is the same as in this shallow brine aquifer. The two brine aquifers might also be connected by fractures or dissolution channels. Evidence for a deep circulation pattern is given in the chemistry sections later in this chapter.

A test of this aquifer was conducted by the Bureau by pumping one of the wells and monitoring the response in several observation wells. A pumping rate of greater than 400 gallons per minute was obtained, but there were interpretation problems due to well construction and pump difficulties. However, a fair Theis curve match was obtained, giving a transmissivity of, roughly, $2500 \text{ ft}^2/\text{day}$. The calculated storage coefficient was in the artesian range. No evidence of leakage, recharge boundaries, or stabilization of the drawdown curve could be seen in the data, which is puzzling considering both the proximity of the wells to the river and brine discharge, and to the overlying or nearby Triassic water-table aquifer. It is probable that either the cone of depression had not expanded enough to intercept an area of upward leakage, or that this effect was masked by test problems.

It has been postulated that brine discharge to the Canadian River below Ute Dam has been caused by pressurization of this shallow brine aquifer by Ute

LAKE MEREDITH SALINITY INVESTIGATION

Reservoir, or that brine flow has increased because of the reservoir. However, Spiegel (1957a) mentioned the existence of brine inflow in this area several years prior to the construction of Ute Dam. Also, geochemical evidence, given later in this chapter, shows that the rate of chloride inflow to the river has not risen significantly since dam construction. Thus, the effect, to date, of Ute Reservoir on the flow of brine to the river has not been large. This does not preclude the possibility of planned higher reservoir stages affecting brine flow in the future.

CANADIAN RIVER HYDROLOGY

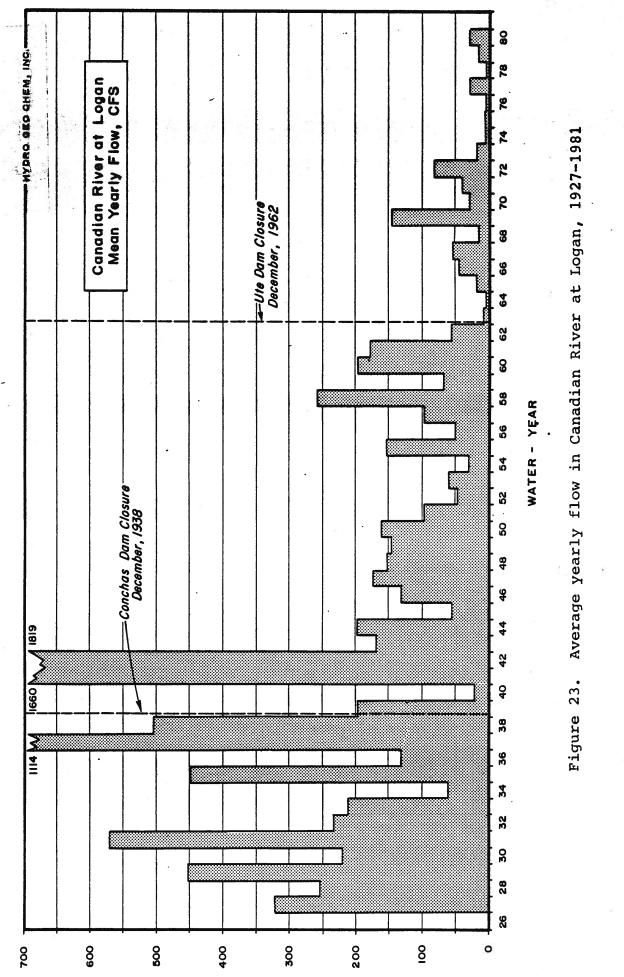
1. Channel Deposits

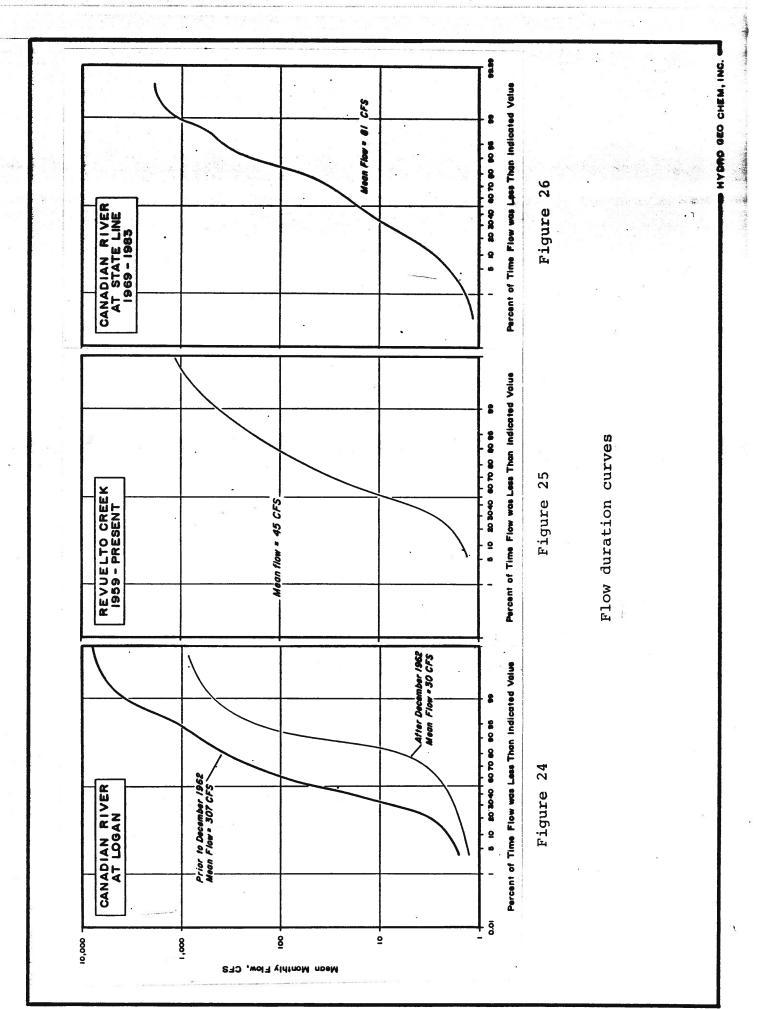
The Canadian River below Ute Dam has cut a channel through nearly 1000 feet of Triassic rocks (difference between the elevation of the stream channel and the elevation of the Triassic under the caprock). Between 50 and 75 feet of fine-grained clastic sediments have been deposited in the channel. The channel is 400 to 600 feet wide for most of the reach between Ute Dam and the New Mexico-Texas state line. Along the 75 river miles between state line and Tascosa, Texas the river widens its flood plain to as much as 2 miles; at Tascosa the channel width is about 0.7 miles. Downstream from Tascosa the channel gradually narrows to about 1000 feet. The stream gradient is fairly uniform, averaging 5.3 feet per mile, from an elevation of about 3680 feet at Ute Dam to 2900 feet at the bridge at Highway 287 north of Amarillo, 148 river miles downstream.

The Canadian River Municipal Water Authority (CRMWA) and the Bureau of Rec-

FINAL REPORT

lamation have each drilled several piezometers into the channel deposits since about 1972. See Figures 20 and 21 for locations of these wells. Each of the sites have several piezometers at depths between 15 and 50 feet. Drilling notes furnished by the Bureau of Reclamation mention that sand, a few 'pea sized' gravel lenses or interbeds, and clay were encountered while drilling. Depths to bedrock under the channel ranged from 20 feet in Revuelto Creek, to 34 feet at USBR Site 1, to 50 feet at USBR Site 6 and CRMWA Sites 2 and 4. At the Dunes damsite, well DH-10 penetrated about 80 feet of channel deposits (Spiegel, Water levels in the piezometers are generally within a foot or two of 1957a). the land surface, and there are no noticable water-level variations between piezometers open at different depths at the same sites. Permeability has not been measured in any of the channel piezometers. Given the predominance of poorly sorted, medium to fine grained sands, and the uncertain continuity of gravel layers, we estimate that the channel's hydraulic conductivity ranges between 5 and 20 feet/day (Davis and DeWiest, 1966). Based on the higher value, flow rates through the alluvium are calculated to vary from about 500 ft^3/day $(5.8 \times 10^{-3} \text{ cfs})$ at piezometer Site 1, to about 6600 ft³/day (7.6 x $10^{-2} \text{ cfs})$ at Tascosa. These flows are small because of the very low hydraulic gradient. Errors in our estimates of hydraulic conductivity or channel cross-section would cause at most a doubling or tripling of this flow value, still a very small number. The actual fluid velocity within the channel sediments is less than 0.1 feet per day for an assumed effective porosity of 20 percent. This does not imply that the influence of the channel deposits on brine flow is small; however, by these calculations we can see that the largest amount of brine is transported by surface water.


2. Surface-Water Flow


Surface-water flow in the Canadian River between Ute Reservoir and Lake Meredith has been measured by the Bureau of Reclamation and the USGS for locations listed in Table 3. These locations are shown in Figures 20 and 21. Flow data was obtained from Water Resources Data from New Mexico and Texas, various years, from USGS Water-Supply Papers, and from unpublished Bureau of Reclamation data. The discussion of flow begins at Ute Dam and proceeds in a downstream direction.

Flow from Ute Dam is periodically measured through a Parshall flume connected to a long toe drain. During the period of this study, flow averaged about 1 cfs. In addition there is a small amount of leakage from the flood gates. Spiegel (1969) estimated that 5 cfs leaks through or around the dam into the river; however, from our observations, this rate seems too high.

The flow record for the Canadian River at Logan, about 2 miles downstream of the dam, is shown in Figures 23 and 24. The effect of closure of Ute Dam in December, 1963, is obvious; mean monthly flow dropped from 307 cfs before closure to 30 cfs since closure; the median flow from 80 to about 2 cfs. The large difference between mean and median flows is due to the few occasions of flow over the spillway at Ute Dam. The low median flow is about equal to that which seeps through the dam.

Base flow in Revuelto Creek, which enters the Canadian River about 6 miles below Ute Dam, is largely sustained by irrigation return from the Tucumcari Pro-

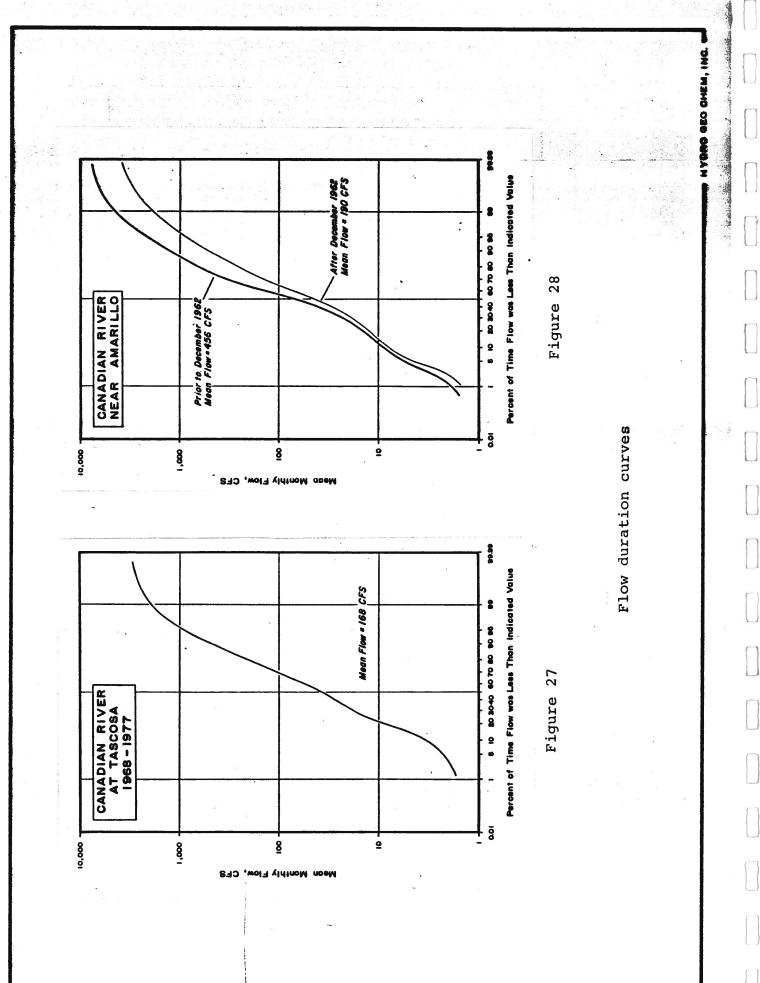
Н

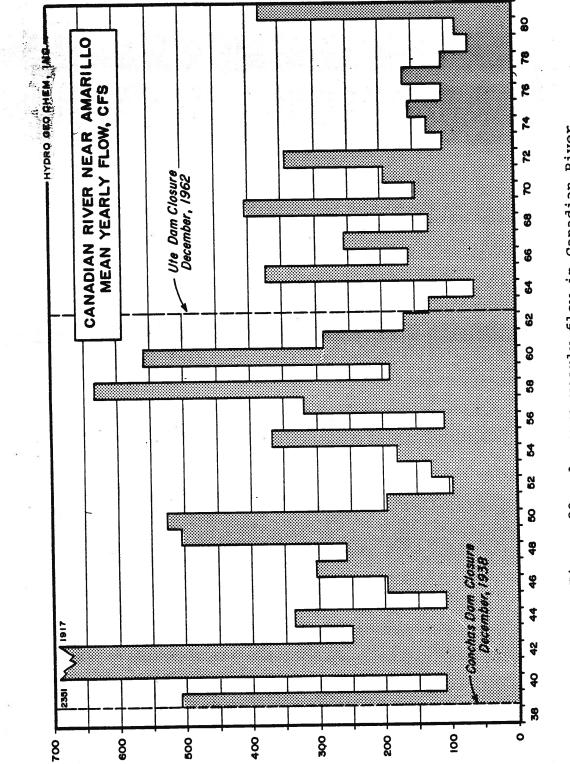
[

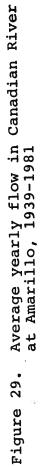
ject. Figure 25 shows the flow-duration curve for Revuelto Creek. Mean monthly flow is 45 cfs and the median is 8 cfs. As expected, flows in Revuelto Creek and the Canadian River at Logan show no correlation. Their combined mean flow is 75 cfs. The combined median flow for the period since Ute Dam was closed is 10 cfs.

USGS Station	Location	Period of Record (water years)
-	Ute Reservoir Toe Drain	1969?-present (periodic measurements taken, only)
7227000	Canadian River at Logan (near Hwy 54 bridge)	1909-1910; 1912-1915 1924-1925; 1927-present
7227100	Revuelto Creek near Logan (at Hwy 39 bridge)	1959-present
7227140	Canadian River above State Line	e 1969-present (periodic measurements taken, only)
7227470	Canadian River at Tascosa	1968–1977
7227500	Canadian River nr Amarillo (at Hwy 87-287 bridge)	0 1924-1926; 1938-present

Table 3: Flow-measurement stations in study area


Flows are periodically measured near the New Mexico - Texas state line, about 40 river miles downstream from Ute Dam; however, no gaging station is maintained there. Figure 26 shows the flow-duration curve for this station, based on 127 flow measurements since 1969. The mean measured flow is 81 cfs and the median is 13 cfs.


The correlation between combined daily flows upstream at the Revuelto and


Logan stations and these state line measurements is good for low flows but poor for high flows. When only low flows since 1969 are considered in the correlation, the average state line flow was 11 cfs, while the average flow at the combined Logan and Revuelto stations was 7 cfs, with a correlation coefficient (using least-squares analysis) of 0.70, which is fairly good. Thus the low flow increases by about 4 cfs between the Revuelto Creek confluence and the state line. This is mostly due to base flow increases, or groundwater inflow. This is in agreement with the previous calculation of Triassic discharge to the river.

The flow-duration curve for the Canadian River at Tascosa, Texas, 115 river miles downstream from Ute Dam, is shown in Figure 27. Mean monthly flow is 168 cfs, and the median is about 30 cfs for the period between 1968 and 1977. The mean monthly flow for the same period at the combined Logan and Revuelto stations was 81 cfs, for a net gain of 87 cfs. During low flows, however, the gain is only 5 to 15 cfs, and some periods show stream losses. (Tascosa recorded three months of zero flow.) When large gains in flow occurred, it was during the summer rainy season, most likely from the perennially flowing Punta de Agua drainage (located about 20 miles upstream of Tascosa). Thus there is probably little groundwater inflow between the state line and Tascosa. This supports the hypothesis that little Triassic groundwater discharges to the river in Texas.

The Canadian River near Amarillo, 148 river miles downstream from Ute Dam, is the last flow measurement station upstream of Lake Meredith. The flow-duration curve is shown in Figure 28 and the total flow record in Figure 29. Mean monthly flow at the Amarillo station dropped from 456 cfs to 190 cfs

after the closure of Ute Dam, which is nearly the same reduction as at the Logan gage. The median flow at Amarillo dropped from 65 cfs to 50 cfs after dam closure, much less than the drop at Logan. Thus, since Ute Dam closure, much of the flow at Amarillo has come from the drainage area downstream of the Logan gage.

The correspondence between flow at the Amarillo gage and the other upstream stations are listed in Table 4. We can see that the correlation between Logan and Amarillo dropped after the completion of Ute Dam. When the flow from Revuelto Creek is added to the Logan record, the correlation improves, but not as much as for the pre-Ute Dam period. The reduced correlation is due to reduction of flow upstream of Logan. Historically, an average of 67% of the flow at Amarillo came from upstream of Logan (307 cfs/456 cfs), but this dropped to 16% (30 cfs/190 cfs) after completion of the dam. The correlation between flows at Tascosa and at Amarillo is high, primarily due to a consistent gain in flow between the gaging stations, much of which comes from sewage effluent and from some groundwater inflow.

On the average, the river gains in flow between Ute Dam and the gage near Amarillo. We estimate that the present-day gains are roughly distributed as discussed above and as summarized in Table 5.

HYDRO GEO CHEM, INC.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

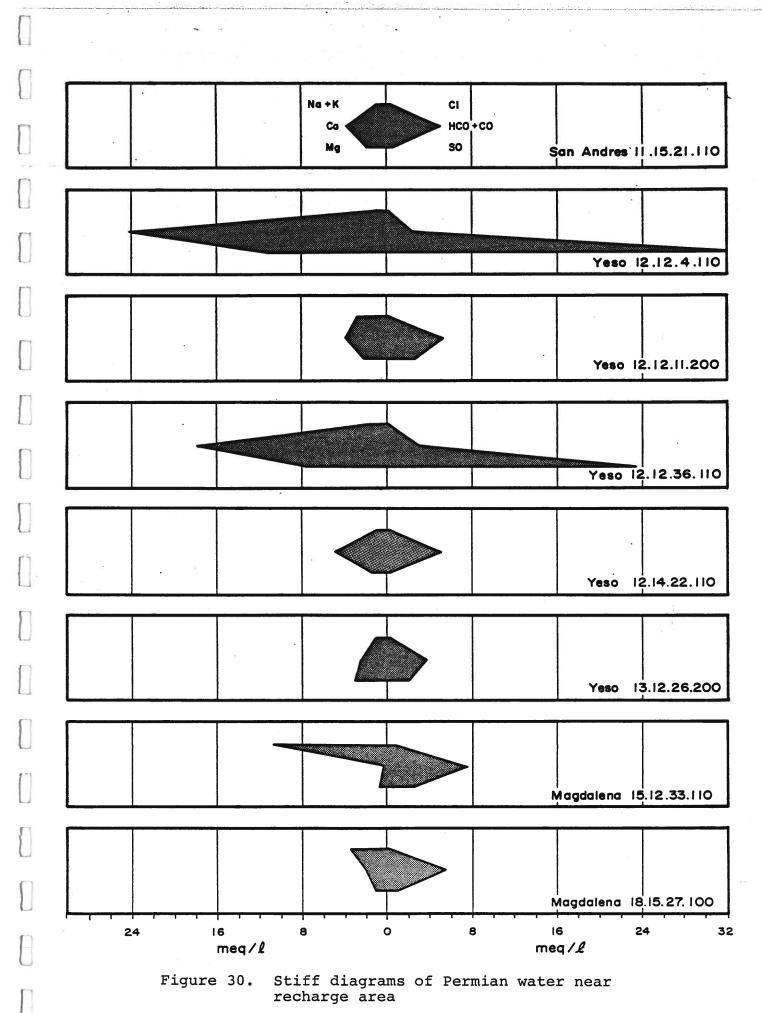
Correlation between	Mean Flow at Amarillo (cfs)	Mean Flow at other station (cfs)	Correlation coefficient (r ²)
Amarillo and Logan, prior to 1962	456	307	0.81
Amarillo and Logan, after 1962	190	30	0.39
Amarillo and Tascosa, 1968 to 1977	196	168	0.90
Amarillo and (Logan plus Revuelto), 1959 to 1981	196	92	0.60
Amarillo and State Line, 1969 to 1981	173	81	_

Table 4: Summary of correlations between Canadian River flowat Amarillo and at various upstream stations

Table 5: Summary of gains in Canadian River flow between Ute Dam and Lake Meredith

а. Р	Flow Gain	From
1	30 cfs	below Ute Dam, of which about 2 cfs is from seepage and groundwater inflow, the rest from the few occasions of flow over the spillway.
2.	45 cfs	from Revuelto Creek, primarily from irrigation return (about 8 cfs) and flood flows.
3.	5 cfs	between Revuelto Creek and State Line, primarily from groundwater inflow.
4.	87 cfs	between State Line and Tascosa, primarily from flood flows, probably from the Punta de Agua drainage.
5.	22 cfs	between Tascosa and Amarillo, mostly from groundwater groundwater inflow, some from irrigation return, little from flood flows.
Total	: 190 cfs at	: Amarillo gage

- 1


CHEMISTRY OF GROUNDWATER - SURFACE WATER SYSTEM

Chemical analyses of groundwater and surface water have been obtained from the literature, from unpublished records, or from samples collected during this study. These analyses are tabulated in Appendix B.

1. Chemistry of Permian Water

The chemistry of groundwater generally reflects the composition of the rock types it flows through as well as the distance from its point of recharge and time spent in the aquifer. Water quality in the primary recharge area for the Permian is generally good for the 9 available analyses (Griggs and Hendrickson, 1951). Total dissolved solids average 750 mg/l, and chlorides average less than 10 mg/l. The predominant water types are calcium bicarbonate, calcium sulfate, and sodium bicarbonate. The first two types are those evolved through dissolution of limestone or dolomite and gypsum, typical rocks comprising the San Andres and Yeso. The third water type is probably due to exchange of calcium for sodium on clay minerals.

A convenient way to compare water quality analyses from several sources is graphically using Stiff diagrams. In this type of graph, ion concentrations (on an equivalence basis) are plotted as points on two scales, one for major cations, the other scale for major anions, and the points are connected, giving the analysis a characteristic shape. Figure 30 shows Stiff diagrams of water analyses from Permian and Pennsylvanian rocks from the recharge area. The characteristic shapes show the dominance of the calcium, sulfate, and bicar-

bonate ions in the water chemistry, and the lack of chloride.

The evolution of Permian water as it flows eastward from its recharge area can be seen in the Stiff diagrams in Figure 31. Halite dissolution is evident in the diagram for the Ray No. 1 Hoover well (11.28.30.232) near Tucumcari. Both sodium and chloride greatly increase, and are nearly equal on an equivalence basis. This strongly implies that the source of the ions is through the dissolution of halite. The increases in calcium, bicarbonate and sulfate from their concentrations in the recharge area are due to the continued contact with Permian carbonates and gypsum. However, the relatively low total dissolved solids (7,100 mg/l) compared to Permian water quality farther to the east, indicates that the location of this well was near, but still to the west of, Permian halite deposits.

The analysis from the Dripping Springs well, from a sample collected in this study, is also shown in Figure 31 and listed in Appendix B. This water is predominantly of sodium-chloride, much more concentrated than the water from Ray No. 1 Hoover. It has low pH (6.02), high TDS (81,000 mg/1), and may evolve CO_2 gas, by a combination of sulfate reduction and hydrocarbon oxidation:

 $S0_4^{-2} + 2CH_2O + 2H^+ \Rightarrow H_2S + 2CO_2 + 2H_2O$

The source of the salt is evidently from halite dissolution. This well is along the boundary of the halite dissolution zone shown in Figure 5.

Stiff diagrams of four wells in Hartley and Potter counties, Texas, are

** HYDRO GEO CHEM, INC. Ray No. I Hoover Well 11.28.30.232 Texas-Hartley County, Wolfcampian County, Wolfcampian **Dripping Springs Well** County, Wolfcampian meq / L **Fexas** - Potter **Texas - Potter** 1 1 1 1 Ş 7/bew **§** Note Scale Change Note Scale Change

Stiff diagrams of Permian water near study area Figure 31.

shown in Figure 31 to illustrate the evolution of water quality down the flow path. The continued dissolution of halite, raising the average total dissolved solids to an average of 150,000 mg/l, is consistent with eastward thickening salt beds overlying the Wolfcamp. Other important reactions are the nearly complete loss of carbonate species, and probable outgassing of CO_2 from the sample.

The 10-fold increase in calcium between the New Mexico and Texas water samples is probably due to cation exchange by clay minerals. This would also cause a depletion of sodium relative to chloride, which is seen in the analyses.

Thus we see the evolution of Permian waters toward a sodium-chloride brine. Within the area of detailed study there seems to be an abrupt degradation in water quality, with a 10-fold increase or more in total dissolved solids, obviously related to halite dissolution along a zone that passes through the detailed study area.

2. Chemistry of Triassic Water

The chemistry of Triassic groundwater is primarily influenced by residence time, flow-path length, lithology, and ion exchange properties of the rocks. In some areas, the quality of excess irrigation water from the Tucumcari Project is also a factor. Because of the spatial variability of these influences, water quality is expected to show similar variability.


The average characteristics of twenty-three Triassic water analyses in the detailed study area are listed in Table 6.

Ion	Range mg/l	Average mg/l meq/l	
Ca Mg Na K HCO ₃ CO ₃ SO ₄ C1 Br	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	54 2.7 35 2.9 366 15.9 4.7 0.12 449 7.4 14 0.46 416 8.7 152 4.3 0.29 0.004	
pH TDS	6.9 - 9.3 527 - 5520	7.7 — 1261 —	

Table 6: Summary of chemical characteristics of 23 samples of Triassic groundwater in the study area

Stiff diagrams and locations of several water analyses from Triassic wells in the vicinity of Ute Reservoir are shown in Figure 32. The groundwater is predominantly sodium-bicarbonate to sodium-sulfate. Chloride is generally low except in two analyses. Probable chemical reactions producing these water types are dissolution of limestone, gypsum, or calcareous cement in sandstones, and exchange of calcium for sodium on shales and clays. Stiff diagrams of water from Ute Reservoir and water from dam seepage (Ute Outflow) are also shown. Note that the surface water is predominantly sodium-bicarbonate and low in dissolved solids, while the outflow water is more typical of Triassic water, except that chloride is higher than average, which may be due to mixing with deeper waters. Groundwater mixing is discussed later in this chapter.

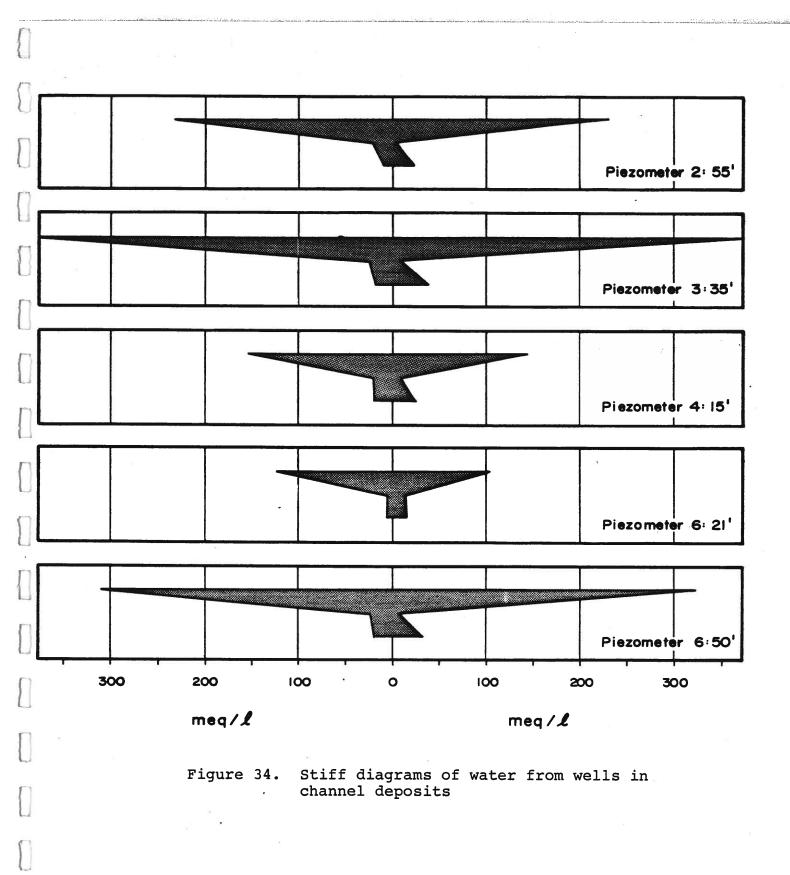
The amount of chlorides entering the river from Triassic groundwater can be calculated by assuming that the average chloride concentration in groundwater is 152 mg/l and the gain in flow rate is 5 cfs. This amount is equal to 21,500 mg/sec, or about 0.02 Kg/sec.

LAKE MEREDITH SALINITY INVESTIGATION

3. Shallow Brine Aquifer Chemistry

Analyses of water from wells OW-3 and DH-2, Bureau wells drilled into the shallow brine aquifer, are listed in Appendix B. Stiff diagrams of the analyses are shown in Figure 33. Both are sodium-chloride water types, although DH-2 concentrations are much lower than OW-3, and both are fresher than the Permian brines.

The chemical similarity between OW-3 water and deeper Permian water suggest that the former is a more dilute sample of the deeper water. On the other hand the DH-2 sample indicates that the area of brine in the shallow aquifer is not extensive, even though the aquifer itself appears to be. The quality of the water in DH-2 appears to be better than both the overlying channel deposit water, discussed below, and the underlying Permian water.

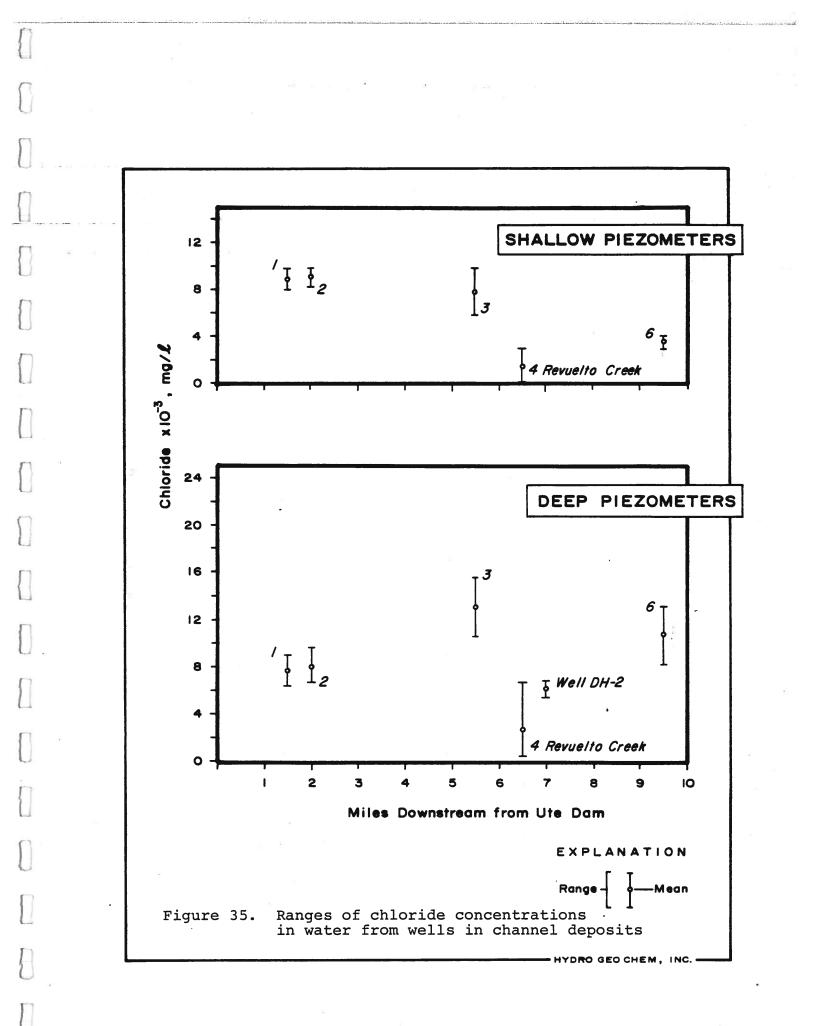

Oxygen, hydrogen and carbon-14 isotopes were collected and analyzed from well OW-3 to help define the source of water to the shallow brine aquifer. These analyses are discussed later in this chapter.

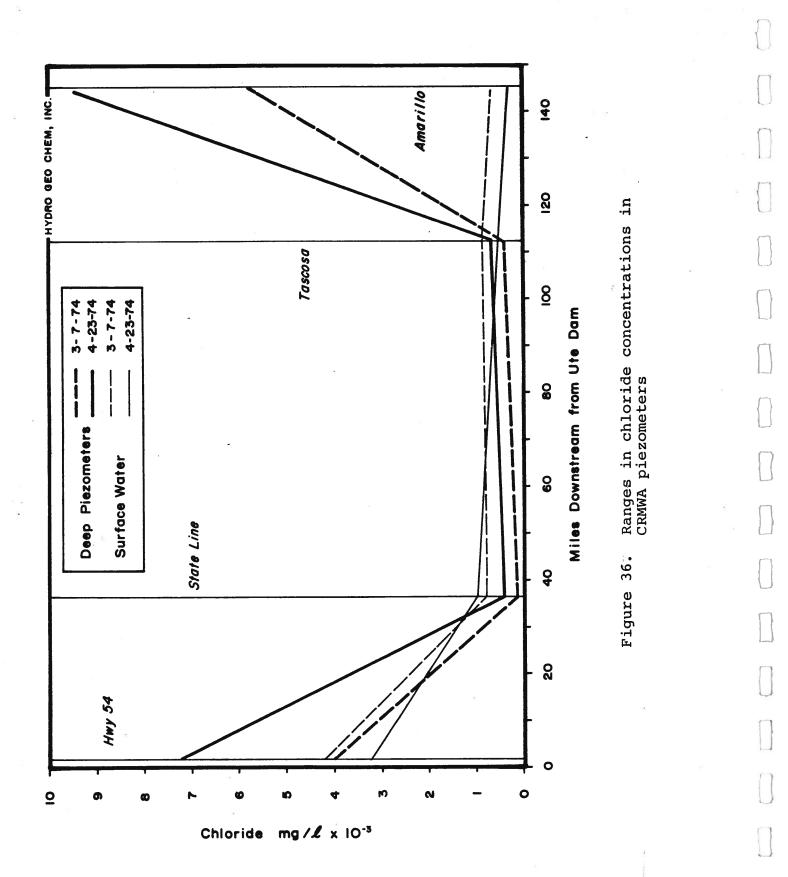
4. Chemistry of Water in the Channel Deposits.

Water quality has been measured in several piezometers in the channel deposits since 1974, to delineate and quantify the amount of brine seepage into the river channel. Chemical analyses of this water were furnished by the Bureau of Reclamation or were collected for this study. They are tabulated in Appendix B, Table B.1. Stiff diagrams of these analyses are shown in Figure 34. All sam-

• . HYDRO GEO CHEM, INC. 000 808 Well DH-2 Well OW-3 600 600 Stiff diagrams of shallow brine aquifer water meq/r**4**00 400 Hcios + cos 200 200 80'4 ភ 0 0 200 200 -₀-**₀** Na + K - γ/bem Figure 33. 400 **0** 600 000

-


HYDRO GEO CHEM, INC. FINAL REPORT I


LAKE MEREDITH SALINITY INVESTIGATION

ples are easily seen to be a sodium-chloride type. The maximum salt concentration is at Site 3, indicating that salt enters the channel between Sites 2 and 3, as well as upstream of Site 2. A comparison of chloride in the deep and shallow piezometers at Site 6 shows strong evidence for salinity stratification within the channel deposits. This is probably due to density flow of brine along the bottom of the channel deposits. It is not possible to ascertain whether brine enters the channel between Sites 3 and 6. The information does imply that some brine inflow takes place near Site 4 in Revuelto Creek.

The range in chloride concentrations in the deep and shallow USBR piezometers with distance downstream from Ute Dam is shown in Figure 35. It is seen that brine enters the channel upstream of Site 1 and between Sites 2 and 3. The shallow piezometer results correspond with the deep piezometers, but have lower concentrations, caused by river flows periodically flushing the shallow sediments. For comparison, the analyses from well DH-2 are also shown. The large chloride range in the deep piezometer at Site 4 suggests that the Revuelto Creek deposits are a minor source of brines, and that creek water periodically flushes the channel deposits.

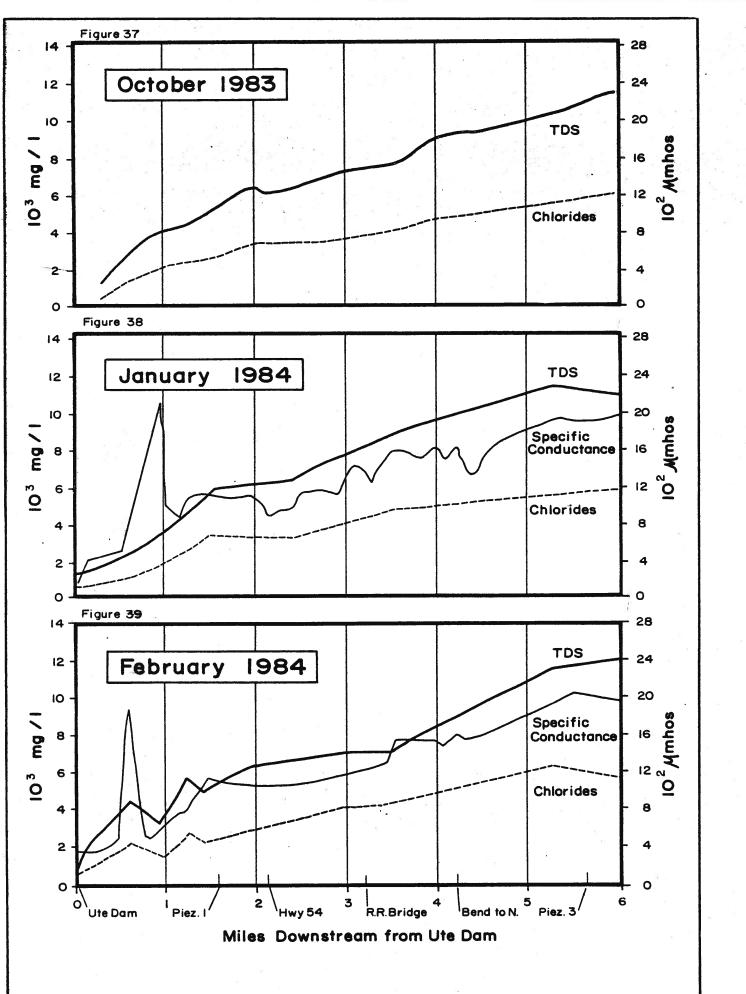
Two partial analyses from four CRWMA piezometer sites between Highway 54 bridge and the Amarillo gage are shown in Figure 36. These are plotted against distance from Ute Dam. The chloride distribution in this graph shows there are two sources of brine, that no brine enters the river between the state line and Tascosa, and that salinity stratification, or brine density flow, observed in the piezometers close to Logan, dissipates by the state line. The salinity in the river water and in the groundwater between these two stations becomes simi-

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

lar in concentration.

5. Surface-Water Chemistry


<u>Ute Reservoir</u>

The quality of water in Ute Reservoir has been measured since 1967 (data from USGS WATSTORE files). The average TDS is about 500 mg/l and chloride rarely exceeds 50 mg/l, with no general trends in either parameter over time. It is predominantly a sodium-bicarbonate water type. Depth-quality measurements in the reservoir have revealed no salinity stratification.

<u>River Water</u>

Surface water quality has been routinely measured at the Revuelto, state line, Tascosa, and Amarillo stations for many years. It is not measured at Logan. During this study we measured several water-quality parameters of the stream water between Ute Dam and Revuelto Creek in an effort to isolate the particular brine inflow areas. During one low-flow period we extended this survey downstream almost as far as the Dunes damsite. In addition, a survey of Revuelto Creek was made. The results of these surveys are listed in Appendix B, Tables B.2, B.3, and B.4. Plots of chloride concentration, TDS, and specific conductivity of river water between Ute Dam and the Revuelto Creek confluence are shown in Figures 37, 38, and 39.

During the first survey in October, 1983, the sampling interval was about • every quarter mile. Two areas where salinity increased rapidly downstream were found (Figure 37). The first was about 0.5 miles downstream from Ute Dam, just

-HYDRO GEO CHEM, INC.-

below some beaver dams; the other was about 3 miles downstream, beginning at the railroad bridge. The salinity in the river gradually increased to Revuelto Creek.

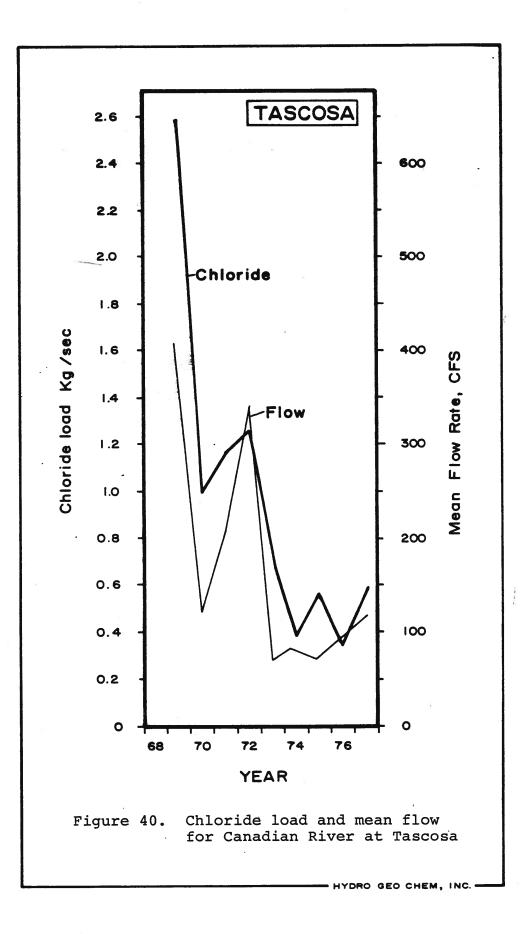
In January, 1984 we used a specific conductivity meter to further refine salinity increases in the channel. Figure 38 shows a spike at 0.9 miles, which was a saline pool, not noticed during the first survey. No further increase occurred until about mile 3, near the railroad bridge. An additional salinity increase was found about 0.5 miles upstream of piezometer Site 3. This survey was continued an additional 18 miles downstream, and also nearly 9 miles up Revuelto Creek. Results are listed in Table B.3. No additional highly-saline areas along either reach were found.

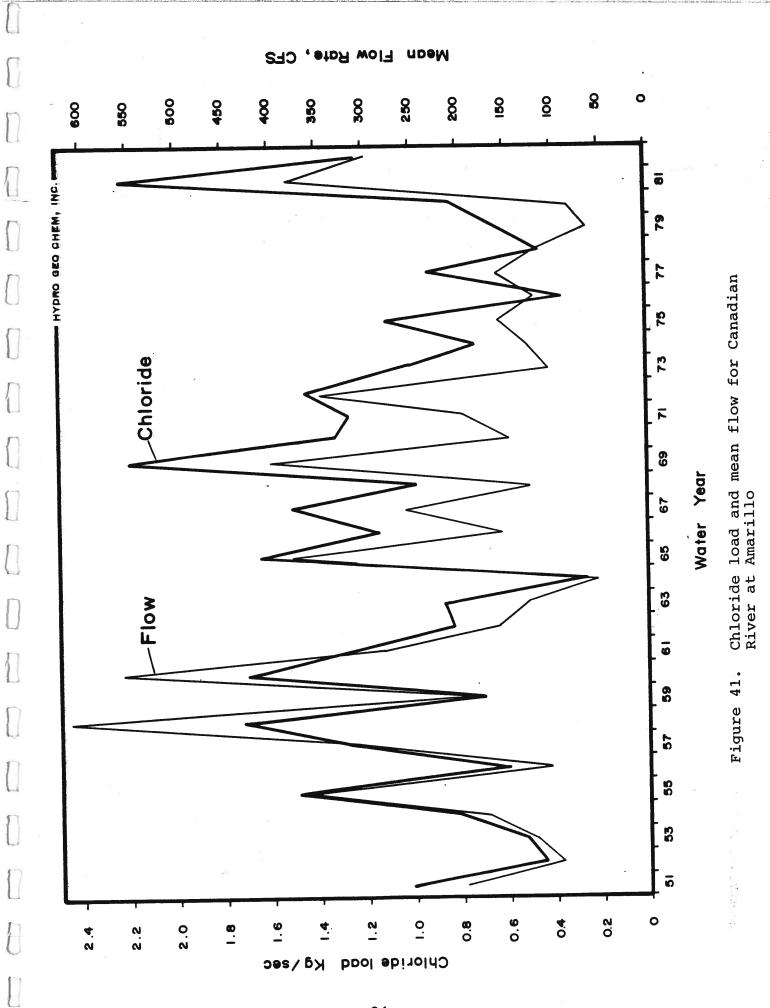
A final survey was made on January 31 and February 1, 1984 to determine whether the continuing low-flow conditions in the river would result in higher salinities. Table B.4 lists results of that survey. Plots are shown in Figure 39. This figure generally mimics the previous two graphs, differing little in TDS or chloride concentration. However, numerous pools of brine were seen that were not noticed on previous trips. Table B.4 lists several, all having nearly identical conductivities of about 60,000 micromhos. These pools were concentrated in three areas: the first beginning about 0.8 miles downstream of Ute Dam and continuing for about 0.3 miles; the second immediately downstream of the railroad bridge; the third about 0.8 miles downstream of the railroad bridge, where the river begins its sharp turn to the north. River flows were nearly the same during these three periods, estimated at about 3 cfs near the confluence with Revuelto Creek.

It should be noted that during each of these surveys no brine seeps or springs were seen. The increase in salinity in the river water comes from brine which seeps into the bottom of the channel deposits, as the water chemistry from the piezometers verifies. Assuming that areas of brine inflow to the channel deposits result in degradation of the river water immediately downstream, then the three areas of stream quality degradation probably correspond to three areas of brine inflow. It may also be possible that at the railroad bridge, excavation due to bridge construction and to a buried cable nearby have disturbed the channel sediments such that the brine is forced to the surface in the area.

Some of the important water quality characteristics measured at Ute Dam and at the Revuelto Creek, State Line, Tascosa, and Amarillo stations are listed in Table 7. Chloride loads were computed using weighted average chloride concentrations and average flows, both on a monthly basis. Selected analyses are listed in Appendix B, Table B.1.

Station		Avera s Cl			Avg Cl Load (kg/sec)		Water Type
Ute Dam	2	330	340	190			0.009	Na-Cl
Revuelto	325	218	96	410	Entire Record	(59–83):	0.08	Na-SO4
State Line	121	1728	1000		Entire Record During overlap w		0.80 0.95	Na-Cl
Tascosa	113	530	413	290	Entire Record	(68-77):	0.96	Na-Cl
Amarillo	384	320	442	268 During overlap w/Tascosa: Prior to Ute Dam (1962): After Ute Dam (1962): Entire Record (50-82):		1.15 1.02 1.07 1.05	Na-Cl-SO4	


Table 7: Average chemical characteristics of Canadian River water


The chloride loads show that brine inflow dominates water quality by the state line, with little contribution from Ute water or Revuelto Creek. When the Revuelto Creek and Ute chloride loads are subtracted, about 0.72 Kg/sec of chloride comes from the Canadian River. We showed earlier that the predominant inflow area is between Ute Dam and Revuelto Creek.

The drop in concentration between state line and Tascosa is due to the influx of fresher water to the system. This influx is consistent with the flow patterns in the stream, discussed earlier. However we see that the chloride load remains virtually the same between state line and Tascosa.

We can see that the period of overlapping record among the water-quality stations was also the period of highest average chloride load, indicating that over time the chloride load in the river has increased. There has been a slight upward trend in average chloride load at Amarillo over the years, although we suspect that it may partially be due to changes in sampling frequency. There is an increase in chloride load between Tascosa and Amarillo of 0.19 Kg/sec. The source of this chloride is not known, although sewage effluent or a shallow source of chloride in the Permian rocks which the river cuts through are plausible sources. Evidence supporting the latter was presented earlier, as shown in Figure 36. Thus, of the average chloride load of 1.05 Kg/sec at Amarillo, about 70 percent comes from upstream of the state line.

The transport of salt down the river is not constant, but varies with flow rate. Figures 40 and 41 show the chloride load plotted against mean annual flow for the Tascosa and Amarillo stations. Flow and salt load show good correlation

at both stations. However, this information seems to violate our simple conceptual model of a constant salt input from brine seeps. To reconcile this apparent conflict, we must understand the role of the alluvial channel deposits in the storage and transport of salt. During low river flows, the salt concentrates in the channel because of upward brine movement, coupled with the inability of the narrow stream (only a small fraction of the canyon width) to come in contact with the brine. Evaporation also concentrates the salt, much of which occurs along the banks of the stream. (Evaporation within the channel between Ute Dam and Lake Meredith may account for a loss of about 45,000 acre-feet annually, or about one-third of the average flow at Amarillo. This adds, roughly, 70 mg/l of chloride to the average concentration.) Thus as the flow decreases, the salt load also decreases, the difference going to increased sait storage in the channel deposits. During high flows, this salt is flushed from storage, resulting in the higher salt loads. Evidence for this interpretation is in the periodic freshening of the water sampled from shallow piezometers at Sites 1 through 6.

Lake Meredith

Table B.1 in Appendix B lists water quality analyses from Lake Meredith collected from Sanford Dam. Figure 42 shows chloride concentration in the lake over time from samples collected at the dam and at mid-lake. The mid-lake values tend to oscillate around the others showing the same trends. Thus, these values are probably representative of the entire lake. The correlation between water quality in the lake and that in the Canadian River is discussed later in the water and salt budgets section.

[HYDRO GEO CHEM, ING -2* 1982 = • . . ج ج • 1980 × 822 . •• × 1978 :: 26 • 1976 0 1 .0 • 1974 • • • • . [] -1972 8 • 。 00 00 00 00 1970 Water resources data for Texas, various years Near intake tower Texas Department of Water Resources Printout Between Plum Creek and Bates Boat Ramp Texas Department of Water Resources Printout Near intake tower 3. 1 • 1968 0 1966 1964 × 450-50-8 500-400**b** 200-350-250ġ ò 550 Chloride Concentration mg/L

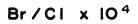
Chloride measurements in Lake Meredith Figure 42.

86

÷

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION


GEOCHEMICAL AND ISOTOPIC DETERMINATION OF SALINITY SOURCES

There are several components of flow which comprise Canadian River water. Water from Ute Reservoir, from tributary flow such as Revuelto Creek, from Triassic groundwater inflow, and from brine springs are the components most important to this study. It is also desirable to quantify the components which comprise the water of shallow brine aquifer. The information presented in the previous sections, together with isotopic analyses from some of the water samples, allow for estimates of mixing to be made.

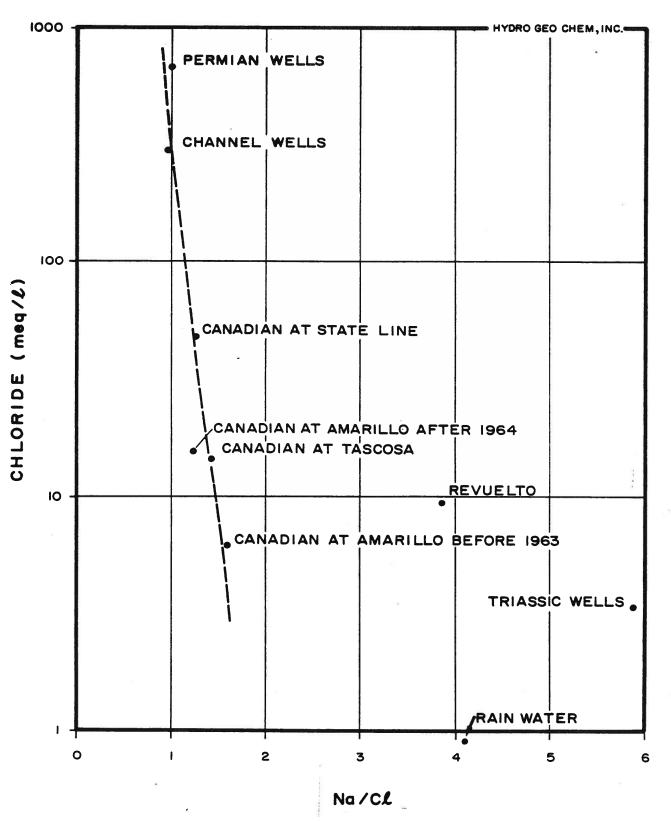
1. Salinity Sources

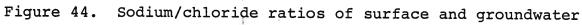
Increased salinity can result from natural dissolution of halite, man caused pollution, mostly due to poor oil-field brine disposal practices, or evaporation. It was calculated above that evaporation within the Canadian River channel could not account for much of the increased salt concentration. However there are many cases of oil-field brine contamination. Whittemore (see Appendix B) has found that the ratios of bromide to chloride in water are much higher in fresh water and in oil-field brines than in halite solution brines. We collected several samples for bromide and chloride determination. Figure 43 is a plot of bromide/chloride ratios against chloride concentration for these samples. All fall in the range of halite dissolution, indicating that oil field brines do not contribute to salinity in the river. The progression from fresh water on the left to brine on the right shows that these waters become more saline through continuing halite dissolution. The Ute outflow sample (from toe drain) is seen to be a mixture of reservoir water and Triassic water. However the Tri-

100,000 Dripping
 Springs - HYDRO GEO CHEM, INC. E-W0 Bromide/chloride ratios of surface and groundwater ۲ Channel
 Wells 10,000 Canadian River Below Ute soretic zone of mixing with halite brines -Triassic Wells CI (mg/1) 34.1 000 Canadian River at Amarillo Theoretic zone 1 22 Ute Outflow **Friassic Springs** <u>0</u> etu. Figure 43. 0 0 10001 8

-

HYDRO GEO CHEM, INC.


FINAL REPORT


LAKE MEREDITH SALINITY INVESTIGATION

assic water itself may be slightly mixed with brines themselves. The differences between the OW-3 and Dripping Springs well samples are the result of dilution of OW-3 with, possibly, Triassic water. However the OW-3 analysis is much more similar to Permian water than to Triassic water.

Other ion ratios are useful in differentiating salinity sources or degrees of mixing. Figure 44 is a plot of sodium/chloride ratios (on an equivalence basis) against chloride concentration for Triassic and Permian groundwater and Canadian River water. The dotted line is one of best fit for those samples obviously influenced by brine. A sodium/chloride ratio of unity indicates a pure halite solution. For comparison the ratio for rainfall is included. The progression of Canadian River water toward a Permian brine is shown, as well as the degradation of water quality in the river after the construction of Ute Dam. The Revuelto Creek and Triassic samples plot far to the right of the mixing line, indicating that these are not greatly influenced by brine.

Two of the most useful indicators of chemically differentiating water are stable oxygen and hydrogen (deuterium) isotopes. Results of isotopic analyses for Ute Reservoir, Ute outflow, Triassic well water, and shallow brine aquifer water are shown in Figure 45. The axes represent the ratios of oxygen-18 to oxygen-16, and hydrogen-2 to hydrogen-1. The meteoric line is the line of best fit established by Craig (1961) for many precipitation samples in the northern hemisphere. Analyses that plot to the right of the line, as ours do, indicate enrichment through evaporation. The analysis for OW-3 is distinctly different from the others. Furthermore, its isotopic values are nearly identical to those in precipitation collected at the same latitude and elevation as our

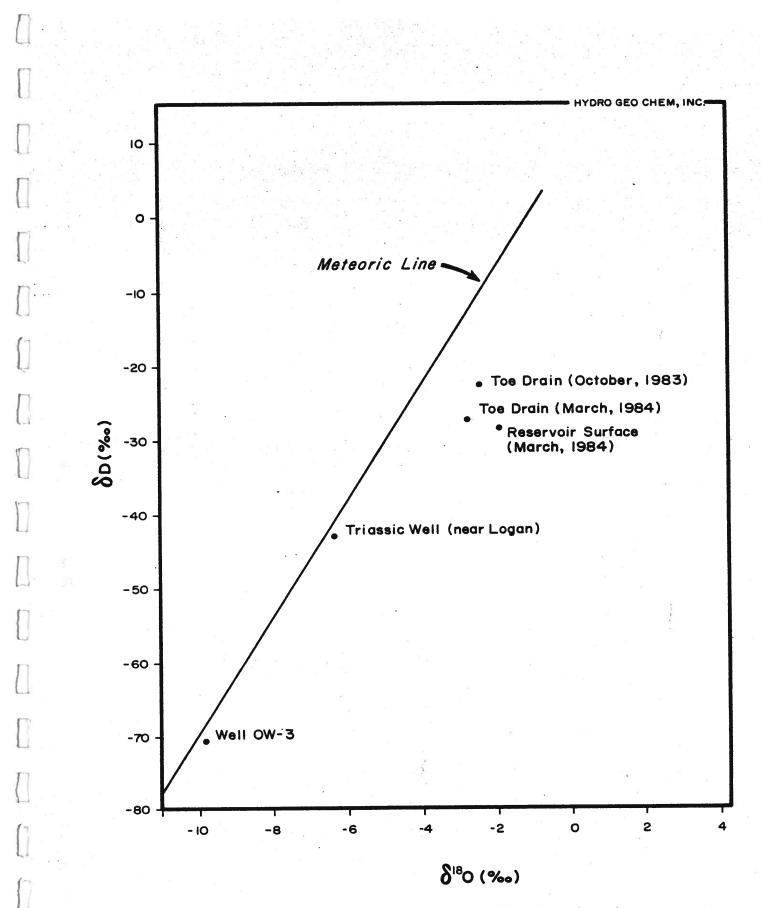


Figure 45. Stable isotopic distributions

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

hypothesized Permian recharge area in the Sangre de Cristo uplift. Its closeness to the meteoric line suggests that the sample has not been enriched through evaporation. The Triassic well analysis is that which would be expected in rainfall at the latitude and elevation of the Logan area, thus supporting the idea of local recharge to the Triassic. The isotopic separation between OW-3 and Triassic samples indicates that the shallow brine aquifer is connected to the deeper Permian aquifer, and may be isolated from the Triassic.

Samples collected from the reservoir and drain show enrichment typical of evaporation. This enrichment is expected from surface-water impoundments, especially in the southwest where evaporation is high. Samples from the toe drain show slightly less enrichment in oxygen, but more enrichment in hydrogen. If the outflow water is a mixture of reservoir and Triassic water, then these samples should plot on a mixing line between the Triassic and reservoir points. All three points plot closely, however, so this discrepancy may only be due to the sensitivity of the analysis. The large isotopic difference between water from the toe drain and Triassic well water, despite their chemical similarity (see section on Triassic chemistry), suggests that much of the dissolved solids in the toe drain water is derived from dam materials themselves.

2. Groundwater Mixing

A sample of OW-3 water was also analyzed for carbon-14 content to estimate the "age" of the water, or how long it has been isolated from the biosphere. Water has an atmospheric equilibrium value of carbon-14 when it enters the ground, but the value decays at a known rate once water is removed from the

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

atmospheric source. An apparent age, in percent of modern carbon-14, is determined; however accurate age dating requires that all sources of carbon in a water sample be known.

The total carbon in a sample can be calculated using pH and alkalinity measurements. For well OW-3, with a pH of 6.36 and an alkalinity of 836 mg/l (see Appendix B), the total carbon is 1670 mg/l. Assuming that the Dripping Springs well is representative of deep Permian water, with a pH of 6.02 and an alkalinity of 765 mg/l, total carbon is 2400 mg/l. For Triassic water, we use the analysis from the Revuelto Creek windmill; with a pH of 6.93 and alkalinity of 580 mg/l, the total carbon is 730 mg/l. If, as we propose, the shallow brine aquifer is a mixture of Permian and Triassic water, then by the ratios of total carbon, it is composed of 57 percent Permian and 43 percent Triassic water.

The measured "age" of the OW-3 sample is $5.72 \pm .58$ PMC. The deep Permian water would have essentially no carbon-14 because of its long residence time in the aquifer. Therefore the carbon-14 must represent some input of recent water. The percentage of modern carbon is given by

PMC (shallow brine) = <u>PMC (Triassic) · Triassic carbon · Triassic fraction</u> Shallow brine carbon

Solving for PMC Triassic, we get 0.33, or about one-third modern carbon. This is reasonable considering the exceptionally high carbon content of the water (most groundwater contains about 250 mg/l), and the del carbon-13 of -4.65 per mill, which is high, indicating more calcite dissolution than normal.

The age of a sample is given by the carbon-14 decay equation:

 $t = -8266 \cdot \ln (A_{s}/A_{std})$

where the ratio is equal to PMC of the sample. The carbon-14 age is 23,600 years. This, of course, represents a mixture of waters of different ages, and is not absolute.

Now that the various sources making up the groundwater and surface water have been identified, simple mass-balance techniques can be used to quantify these sources. The conservative chloride and bromide ions are used in the calculations, and are checked for reasonableness using TDS, sodium, and sulfate.

The amount of chloride entering the Canadian River below Ute Dam was estimated to be 0.70 Kg/sec. If the entire amount of chloride is from the deep Permian system, then the upward flow rate from the deep Permian is

 $0.70 \text{ Kg/sec} \div 0.0437 \text{ Kg/l} = 16.2 \text{ l/sec} = 0.57 \text{ cfs}$

Using the same formula, substituting the chloride concentration in well OW-3, 27,400 mg/l (0.0274 Kg/l), we obtain 0.90 cfs flow from the shallow brine aquifer into the river.

This rate can be verified using another calculation. We assume that the shallow brine aquifer is a mixture of Triassic and deep Permian water, and that 0.57 cfs of Permian water flows into the shallow brine aquifer. The addition of Triassic water, at an average of 250 mg/l chlorides, needed to arrive at a mixture containing 27,400 mg/l chlorides (concentration in OW-3) is given by

 $(43,700 \text{ mg/l}) \cdot (0.57 \text{ cfs}) + 250 \text{ mg/l} \cdot X = 27,400 \text{ mg/l} \cdot (0.57 + X)$

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

where X = Triassic flow rate

$$X = 0.34 cfs$$

Combining the 0.34 cfs Triassic water with the 0.57 cfs deep Permian water gives 0.91 cfs, an excellent agreement with the previous calculation.

By mixing these proportions of Triassic (37 percent) and deep Permian (63 percent) water, we should be able to derive an analysis of the shallow brine aquifer that is close to the OW-3 analysis. Using the Dripping Springs well and the Revuelto Creek windmill analyses (see Appendix 2), the calculated shallow brine aquifer analysis for is listed below on the left and the OW-3 analysis on the right.

Calculated			<u>OW-3</u>
TDS:	51,500	mg/l	49,000 mg/l
SO4:	3,460	mg/l	2,880 mg/l
Na:	18,500	mg/1	17,500 mg/l
Ca:	890	mg/l	800 mg/l
Mg:	430	mg/1	220 mg/l
Br:	6.3	mg/l	5.5 mg/l

The average difference, except for magnesium, is about 15 percent. Given the uncertainty in the chemistry of both the Permian water below the brine aquifer, and the Triassic water, this difference is fairly small and lends validation to the mixing percentages calculated above.

LAKE MEREDITH WATER AND SALT BUDGET

Sanford Dam is about 27 river miles downstream from the Amarillo gage. The dam was closed in October, 1964 and Lake Meredith began filling. We calculated

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

a water budget for the lake to see how river flow and salt load in the Canadian River correlated with changes in storage and salt concentration in the reservoir.

1. Water Budget

The form of the water budget equation is

$I - O = \Delta S$

where I is the inflow, O is the outflow, and $\triangle S$ is the change in lake storage. The various components of the water budget for Lake Meredith may be written as

1. Inflow terms:

 I_{C} = from Canadian River at Amarillo gage

- I_s = from surface water runoff downstream of Amarillo gage
- $I_r = from rain on reservoir surface$
- $I_{q} = from groundwater$
- 2. Outflow terms:
 - O_d = from diversions
 - O_e = evaporation from reservoir surface
 - O_{ec} = evaporation from Canadian River between the Amarillo gage and the reservoir
 - $O_{\rm S}$ = from seepage through dam

 O_{q} = to groundwater

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

3. Change in reservoir storage: ΔS

The water budget equation can now be written:

$$I_c + I_s + I_r + I_q - O_d - O_e - O_{ec} - O_s + O_q = \Delta S$$

Grouping terms that have been measured or estimated on the right, and terms that are unknown on the left:

$$I_s + I_q - O_q - O_{ec} = (O_d + O_e + O_s) - (I_c + I_r) + \Delta S$$

We call the left side of the equation the residual, and is what is solved for in the water budget. It can be seen that the residual also contains the total error in all of the terms on the right side of the equation. Data used to solve this equation were from 1) pan evaporation and rainfall measurements collected at Sanford Dam or from nearby Borger, Texas; 2) diversions, Canadian River flow, and changes in reservoir storage from U.S. Geological Survey Water Supply Papers (various years); 3) seepage from the dam from information given by John Williams of CRMWA and from an empirical formula relating seepage to Mr. volume in the reservoir using a maximum of 6.5 cfs, the maximum observed flow; 4) and area-capacity data from the Bureau of Reclamation. Pan evaporation was multiplied by a lake/pan coefficient of 0.7. The data were compiled on a monthly basis since October, 1964, and are given with the water-budget results in Appendix C, Table C.1.

The results show an average residual of -2100 acre-feet per month, although its distribution is very uneven, only occurring about 38% of the months and only when there are large flows at Amarillo. The correlation between large Amarillo

flows and large negative residuals indicates that bank storage (equivalent to the term O_g) accounts for a substantial quantity of water. Because of the net gain in reservoir storage, a negative residual is expected. During small Amarillo flows and when reservoir levels decline, small positive residuals occur. The lack of large positive residuals indicate that groundwater inflow, I_g , and not surface water below the Amarillo gage, I_S , accounts for much of the difference.

Whether these residuals are an actual measure of the groundwater component or only represent a large component of error in some of the other terms cannot be answered with this information. The pattern of residuals indicate that the error terms are not large. The salt budget for the reservoir provides additional information supporting the results obtained in the water budget.

2. Salt Budget

As was determined in the water budget, the source of water to Lake Meredith is overwhelmingly from the Canadian River. Thus, it is reasonable to expect that the source of salinity in the lake is also from the river. The salt budget is analogous to the water budget and can be used to test the hypothesis that salinity in the Canadian River accounts for salinity in Lake Meredith. The salt-budget equation may be written with the following notation:

 V_r^k = volume in Lake Meredith during month k

 C_{r}^{k} = salinity concentration in Lake Meredith during month k Then,

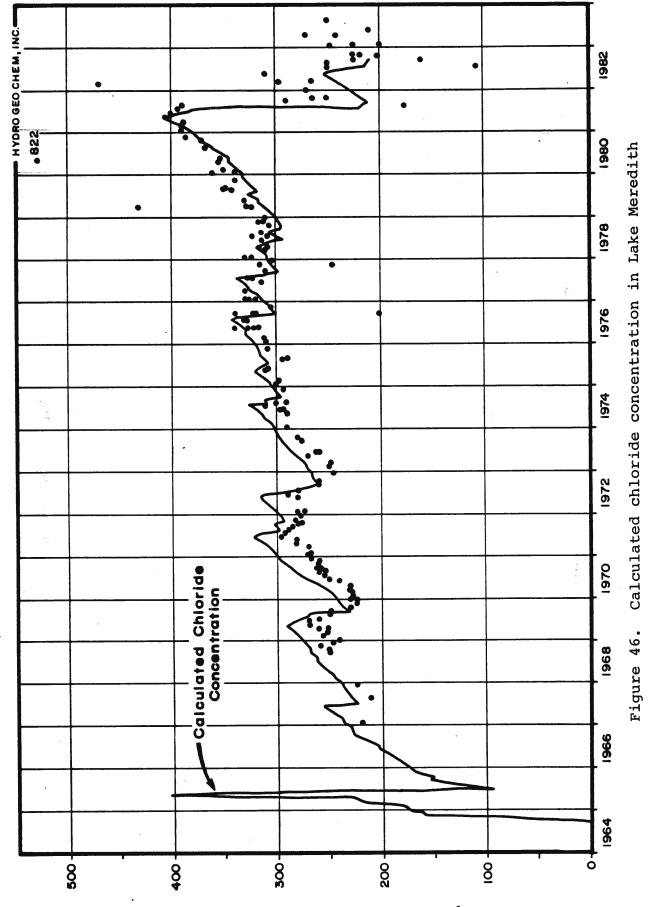
 \boldsymbol{V}_r^k . \boldsymbol{C}_r^k = the mass of salt during month k, and

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

 $V_r^{k-1} \cdot C_r^{k-1}$ = the mass of salt during month k - 1. Q_a^k = Canadian River flow at the Amarillo gage during month k C_a^k = salinity concentration in the Canadian River at the Amarillo gage during month k

Then,


 $Q_a^k \cdot C_a^k$ = mass of salt inflow during month k O_d^k = diversions from the lake O_s^k = seepage through the dam R_r^k = residual, as calculated in the water budget $(\underline{C_r^k + C_r^{k-1}})$ = average salinity concentration in the lake

The mass of salt corresponding to the diversions, seepage, and residual terms

is the average salinity term.

The equation for the change in the mass of salt between month k-l and k is: $V_r^k \cdot C_r^k - V_r^{k-1} \cdot C_r^{k-1} = I_a^k \cdot C_a^k + R_r^k \cdot (C_r^k + C_r^{k-1}) - (O_d^k + O_s^k) \cdot (C_r^k + C_r^{k-1})$ $\frac{1}{2}$

The values of lake volume, Amarillo flow, seepage, diversions, and residuals were those used in the water budget. The values for salinity input, C_a^k , were the weighted mean monthly chloride, total disolved solids, and sulfate concentrations at the Amarillo gage. The equation was programmed along with the water-budget, solving for lake concentration, C_r^k . The results are shown for chloride on Figure 46. The comparison between measured and calculated values

is, in general, excellent, rarely differing by more than 5 percent from the measured values. Prior to 1972, the calculated values were systematically slightly high, while after 1972 they were slightly low, although at all times the chloride trends were correctly simulated. This agreement in general validates the assumptions made in both the water and salt budgets, as well as showing that the data used are accurate.

Salt-budget calculations were also made using total dissolved solids and with sulfate, though the results are not plotted. The behavior of both calculated parameters was nearly identical; however they differed substantially from the chloride calculations. During the first few years calculated TDS and sulfates were much lower than measured values, as low as 40 percent of measured. During later years calculated and measured were nearly identical. The probable reason for the low calculated values during early years is that when the lake was first filling, much gypsum was dissolved from the surrounding Quartermaster Formation. Thus measured lake concentrations would be higher than those calculated using Canadian River concentrations.

Based on the salt and water budgets the following conclusions can be made:

1. The large calculated residuals in the water budget represent, for the most part, actual groundwater inflows and outflows. The total error embedded in the residual term is relatively small.

2. The total salt load in the reservoir is that which passes in the surface water at the Amarillo gage. If there is an additional source of

salt near the Amarillo gage, little enters the surface water below the gage.

3. Periods of increasing salt concentration in the reservoir are those when inflows are small. This is because the salt concentration of the inflow is comparatively much higher during these periods. Periods of decreasing salt concentration coincide with periods of large inflows, increases in reservoir storage, and large negative water-budget residuals.

3. Prediction of Long-Term Salinity Levels in Lake Meredith

With this salt budget it is possible to predict the long term salinity concentration in Lake Meredith, providing we make several simplifying assumptions. First we must assume that the reservoir has reached a dynamic steady state. Since 1969 reservoir volume has averaged roughly 400,000 acre-feet, although it has ranged between 150,000 and 550,000. Therefore we take the period from 1969 to 1982 to represent a steady state. Second, we assume that diversions, inflow, evaporation, and rainfall follow the same averages as those determined during this steady-state period. Third, we assume that the salt input from the Canadian River follows the same patterns as in the past. This means that no change in the shallow brine aquifer occurs.

These averages, for each month, are given in Table 8. The reservoir chloride prediction was made by continuing the water-budget program past the last calculated month (September, 1982) by inputing these monthly averages and running the calculation until a steady-state chloride was reached. After 40 years the concentration was 400 mg/l. After an additional 20 years the maximum con-

FINAL REPORT

centration increased by only an additional 2 mg/l. Thus we can say that the steady state chloride concentration will be about 400 mg/l given the above conditions.

The same calculations were made with TDS and sulfate. The calculated steady state concentrations are 1,550 mg/l for TDS and 360 mg/l for sulfates. These values may be low because of continuing dissolution of some minerals within the reservoir.

Table 8: Average (1969 to 1982) monthly water and salt budget parameters used to predict long-term chloride concentration

Month	Change in Storage	Diver- sions	Amarillo Flow	Amarillo Chloride	Pan Evap. (in.)	Precip. (in.)
January	-4015	-43 80	1993	647	3.044	0.26
February	-3115	-4273	2259	618	3.954	0.46
March	-4315	-4972	1880	589	6.815	1.00
April	-4231	-5724	4469	455	9.947	0.96
May	-2500	-6134	8777	314	11.387	2.64
June	3194	-6 860	29514	208	13.546	3.25
July	2624	-7726	24562	273	14.405	2.29
August	19871	-7151	34580	172	12.554	2.93
September	5579	-6135	23716	214	9.206	1.83
October	-4961	-5470	9660	311	7.692	1.16
November	-2677	-4379	3696	468	4.184	0.64
December	-5454	-4763	1520	620	2.812	0.26

This calculation, of course, ignores exceptional flow conditions, such as those which produced the high salinities from 1978 to 1981. Such events would temporarily cause salinities to rise above the long-term average. Also not accounted for is long-term climatic changes which would cause the average values listed in Table 8 to become invalid.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

CHAPTER IV

FEASIBILITY OF SALINITY CONTROL

In this chapter we present and evaluate two methods to control the flow of brine into the Canadian River. The first method considers depressurization of the shallow brine aquifer beneath the river. The second method considers several dewatering wells in the channel sediments near the sources of brine inflow. These control measures are evaluted using a numerical model of the flow of salt and water in the groundwater-surface water system. The model allows for the interaction between the river channel sediments and the river as the major transport mechanism that operates to move subsurface salts into Lake Meredith is the flushing of the sediments by the river. Finally, we discuss the feasibility of deep-well injection for brine disposal.

METHODS OF SALINITY CONTROL

If no actions are taken to reduce the brine inflow to the Canadian River, long-term Lake Meredith chloride concentrations may approach 400 mg/l, or even higher during sustained low-flow periods. Total dissolved solids may exceed 1,500 mg/l. Whether this is acceptable to the municipal and industrial users of the reservoir water is not be addressed in this study. However, the salinity reduction which might be achieved through various positive control measures can be evaluated. The methods, advantages, and disadvantages of each system are discussed below.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

1. Depressurization Wells

The rationale behind aquifer depressurization is to reduce the upflow of brine by lowering the hydraulic head of the shallow brine aquifer by means of a pumping well. In such a depressurization program, advantage is taken of the high aquifer diffusivity (T/S) to establish a large radius of pumping influence and thereby lower the hydraulic head over a large area. By decreasing the hydraulic potential, the flow should also decrease. Such a well (or wells) would be drilled into the shallow brine aquifer to a depth of about 400 to 500 feet. The pumping rate would have to exceed the upward leakage rate, because water would be removed from storage in the aquifer as well as being derived from captured leakage.

Depressurization wells have two main disadvantages. First, the hydraulic head of the aquifer is probably about 60 feet above the bottom of the river channel deposits, and flow to the surface takes place through a poorly defined fracture network. Therefore, reducing the head to an effective level may require high pumping rates. Also, the TW-1 test drawdown curve did not show any evidence of leakage, suggesting that the aquifer is extensive and that proper placement of depressurization wells may be difficult. This may mean that although one well may be capable of pumping a rate equal to the total natural upward leakage rate, several wells may be required to reduce the head over a large enough area.

The second disadvantage of depressurization wells to control the upward movement of brines is that the source of brines to the Canadian River is from

the river-channel deposits. If the shallow brine aquifer is depressurized, the storage of brines in the channel deposits may only be slightly affected for long time periods. Thus there may be a long-term in the effectiveness of the depressurization program, because the only mechanism for removing brine from the channel deposits is through the slow process of upward diffusion to the river water, aided by occasional flushing from spillage over Ute Dam.

Constant and

2. Channel Wells.

The storage of salt in the river-channel deposits between Ute Dam and Revuelto Creek is on the order of 10^8 kilograms (based on a 500 foot wide, 50 foot deep, 6.5 mile channel, with 25 percent porosity, and an average of 13,000 This amount is equal to that contributed to the river from ma/l chloride). about 7 years of upward leakage into the channel. Removal of salt directly from the channel deposits should have a rapid effect on the salinity of the river water, an effect that should be measureable in the river water soon after implementation. Such removal can be accomplished by pumping from several shallow (50 feet deep or less) wells completed in the river-channel deposits in the 6-mile reach between Ute Dam and Revuelto Creek. Wells could be drilled within the channel itself and pumped with suction or with windmill-powered piston pumps. They could also be completed as large diameter collector wells along the channel bank, with horizontal drive-points into the channel, similar to the so-called "Ranney Well". (See Chow, 1964, page 13-32, for an illustration of this type of construction.)

Establishment of a shallow well field in the channel holds two advantages.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

First, as mentioned above, the effects should be rapid and measureable. River water and groundwater quality could be monitored regularly to assess the efficiency of the program. Second, the wells could be efficiently located in the areas of high salt concentration. Because the per well cost is low, the cost of making a drilling location mistake would also be small. In addition, should water quality in one well improve, it could be temporarily shut down to reduce the disposal rate.

We anticipate that there are three disadvantages in using shallow channel wells. First, because we suspect several wells would be required, surface piping costs would be high. The variable rate of pumping (if windmills are used or if wells are shut down for various reasons) may necessitate some temporary surface storage of the brines if disposal capacities are exceeded. Second, higher total pumping rates may be required than those from depressurization wells. This is because of the large storage in the channel deposits and the relatively small radius of influence of a pumping well. Storage of salts downstream of the confluence with Revuelto Creek would not be affected. Third, because the wells would be in or adjacent to the river channel, some sort of flood protection would be required, especially in the channel below Revuelto Creek.

TIME EFFECTS OF SALINITY REDUCTION

The characteristics of the brine aquifer, channel aquifer and the surface water must be accurately assessed to predict the effects of any salinity alleviation scheme. This is a difficult problem because, as we have shown in the previous chapters, the brine stored in the channel sediments is partially iso-

lated from the surface water by density differences, and is primarily transported to the surface water by periodic flushing. The transport of most of the salt down the river channel occurs sporadically during these periods of flushing. Because of the complexity of the modes of salt transport, predictions require that several simplifications to the above-described conceptual model of the system be made.

1. Model Description

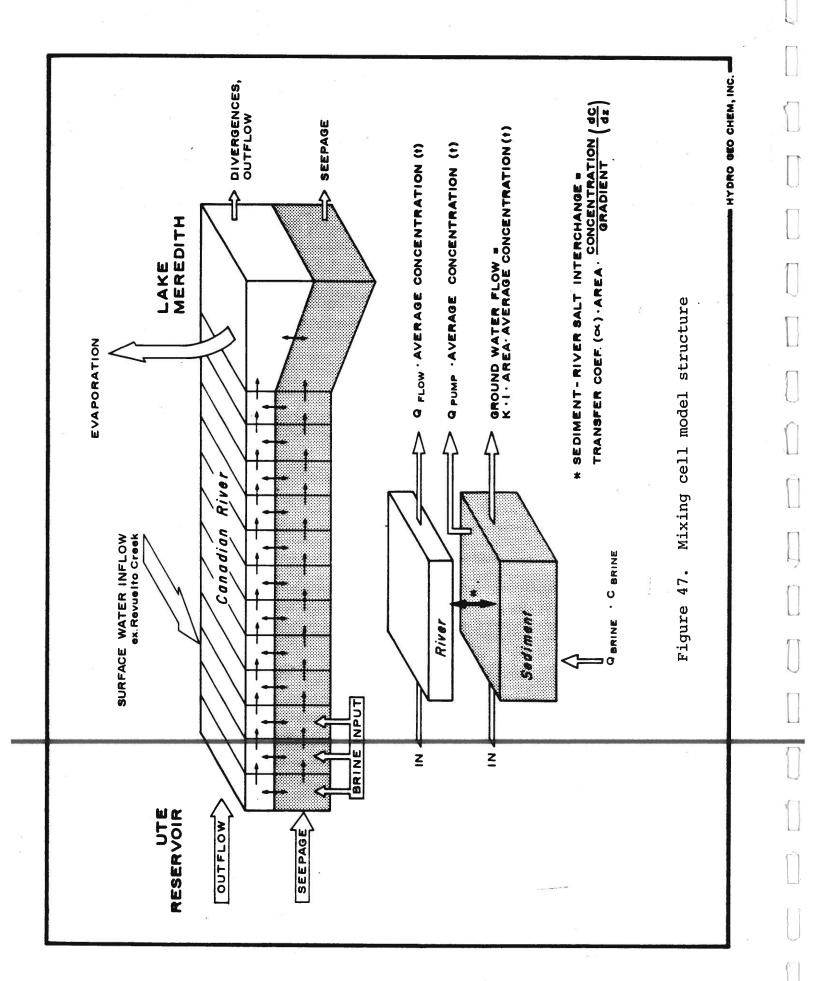
No computer codes are available which describe both solute transport and flow in a combined groundwater - surface water system. We have formulated a mathematical solution, called a mixing-cell model, which considers, in a very simplified manner, coupled water flow and solute transport. In the model we consider only the river-channel sediments and the river itself. The shaloow brine aquifer is considered as a constant flux term to the sediment cells. Thus the hydraulic connection between the two aquifers and any corresponding lag time for flow is neglected in the model. The mixing-cell model uses blocks, or cells, to represent discrete volumes of the aquifer and river reaches. Within each cell the amount of salt that enters and leaves is acounted for (mass bal-The mechanisms of brine movement are both by diffusion and by ance). convection: diffusion processes which control movement of brine from the sediment cells to the river cells, and convection which controls the movement of brine within the sediment cells. In this model, the flow of brine due to density contrasts is neglected.

Two mass-balance equations are used in the model. The meaning of each of

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

the terms used in the equations is shown in the block diagram representing the cells in the model, Figure 47. For river cells the mass balance equation is


$$\frac{c_{1}^{K}-c_{1}^{K-1}}{\Delta t} =$$

$$\frac{Q_{i,i+1}^{k} \cdot C_{i+1}^{k} + Q_{in} \cdot C_{in}}{V_{i}} - \frac{Q_{i,i-1}^{k} \cdot C_{i}}{V_{i}}$$
$$- \frac{\alpha_{i,i+m} \cdot A_{i,i+m}}{V_{i}} \cdot \frac{(C_{i}^{k} - C_{i+m}^{k}) + (C_{i}^{k-1} - C_{i+m}^{k-1})}{2}$$

where C_1^k is the concentration for cell i at time k $Q_{i,i+1}^k$ is the flow between cells i and i+1 at time k V_i is the flow volume $\alpha_{i,i+m}$ is the transfer coefficient between river and sediment cells $A_{i,i+m}$ is the area of transfer between river and sediment cells Q_{in} is the volume of sources (e.g. Revuelto Creek) C_{in} is the salt concentration of sources

For the cells representing the river sediments the mass-balance equation is written

$$\frac{C_{m+i}^{k} - C_{m+i}^{k-1}}{\Delta t} = \frac{A_{m+i,m+i+1} \cdot K \cdot I}{V_{m+i}} \cdot \frac{(C_{m+i+1}^{k} - C_{m+i+1}^{k-1})}{2} - \frac{A_{m+i,m+i-1} \cdot K \cdot I}{V_{m+i}} \cdot \frac{(C_{m+i}^{k} - C_{m+i}^{k-1})}{2}$$

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

$$\frac{\frac{m+i,i\cdot^{A_{m+i,i}}}{V_{m+i}} \cdot \frac{(C_{1}^{k} - C_{1+m}^{k}) + (C_{1}^{k-1} - C_{1+m}^{k-1})}{2}}{2}$$

$$\frac{Q_{\text{brine}} \cdot C_{\text{brine}}}{V_{m+i}} - \frac{Q_{\text{pump}}}{V_{m+i}} \cdot \frac{(C_{m+i}^{k} + C_{1+m}^{k-1})}{2}$$

where C_{m+i}^{k} is the concentration in sediment cell m+i C_1^k is the concentration in the overlying river cell $A_{m+i,m+i+l}$ is the cross-sectional area between adjacent cells

K is hydraulic conductivity

I is hydraulic gradient

 V_{m+i} is the volume of the sediment cell m+i Q_{brine} is the flow rate of brine into the sediment cell C_{brine} is the brine concentration.

We simulated the river reach between Ute Dam and Lake Meredith. The model was divided into twenty river cells and twenty corresponding sediment cells, and initial estimates of hydraulic conductivities, gradients, transfer coefficients, and concentrations were assigned to each cell. To allow for greater detail, 10 cells are used to represent the river between Ute Dam and Revuelto Creek, 6 additional cells are used above the state line, and 4 cells are used between state line and Lake Meredith.

The model has been designed to simulate the low-flow characteristics of the system, not the periodic high-flow salt transport. Thus we neglect an important mode of transport; however, by this the model predictions may be more conservaHYDRO GEO CHEM, INC. FINAL REPORT I

LAKE MEREDITH SALINITY INVESTIGATION

tive. The predictions are simulated in two ways. To simulate the effects of depressurization wells, the brine inflow is cut off from those cells receiving it, and the freshening of water in downstream cells is monitored. To simulate the effects of dewatering from shallow channel wells, the brine inflow continues at its steady-state rate, while certain sediment cells are pumped, and downstream cells monitored for freshening.

2. Model Inputs and Calibration

Once salt reaches the surface water, transport is fairly rapid. Therefore, the slow movement of brines within the channel sediment and into the surface water is all that we are concerned about in this model. This upward movement is proportional to the concentration (diffusion) gradient between the sediment cells and the surface water cells, the constant of proportionality being the transfer coefficient. This coefficient has no direct physical meaning, because the maintenance of the diffusion gradient in the model neglects other transport processes such as density flow and convection.

The following conditions were input to the model:

1. A hydraulic conductivity of the cells representing the channel deposits of 30 ft/day and a hydraulic gradient of 0.001 ft/ft.

2. Two cfs flow at 1,300 mg/l TDS at the upstream boundary to represent flow from Ute Dam and Triassic groundwater.

3. Nine-tenths cfs flow at 49,000 mg/l TDS shallow brine inflow, evenly distributed among the 10 cells representing the channel sediments between Ute Dam and Revuelto Creek.

4. Seven cfs flow at 1,200 mg/l at cell number 10, representing input from Revuelto Creek.

5. Three cfs at 1,250 mg/l distributed evenly between the cells representing

Revuelto Creek and state line, representing groundwater inflow from the Triassic rocks.

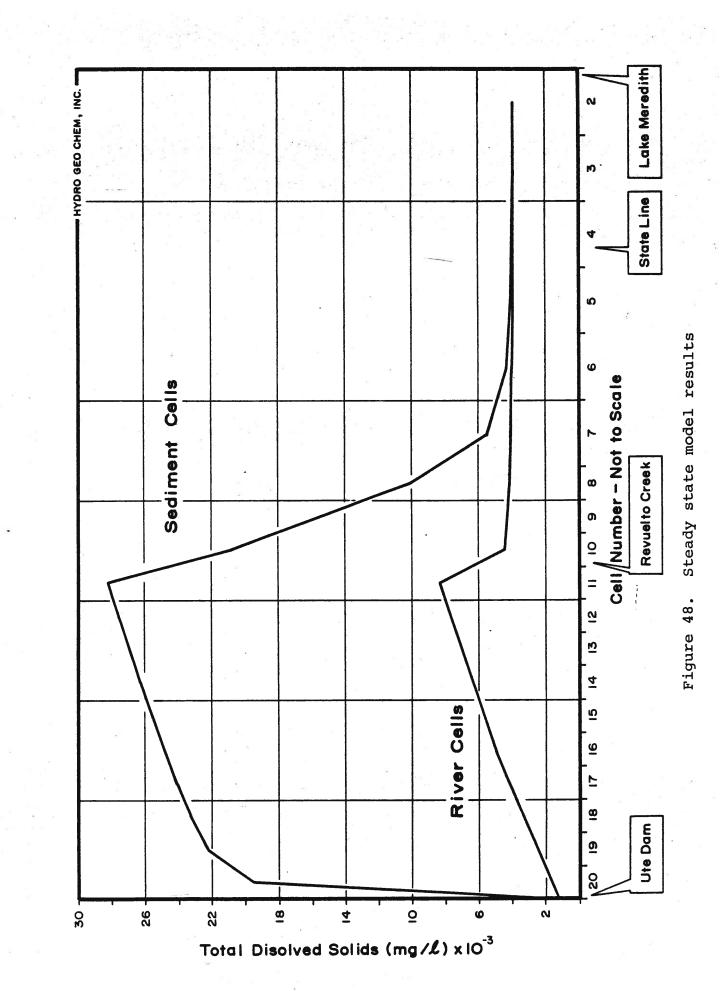
During the calibration process the transfer coefficient was adjusted until the differences between modeled and observed concentrations and gradients were small. The criteria used for calibration were:

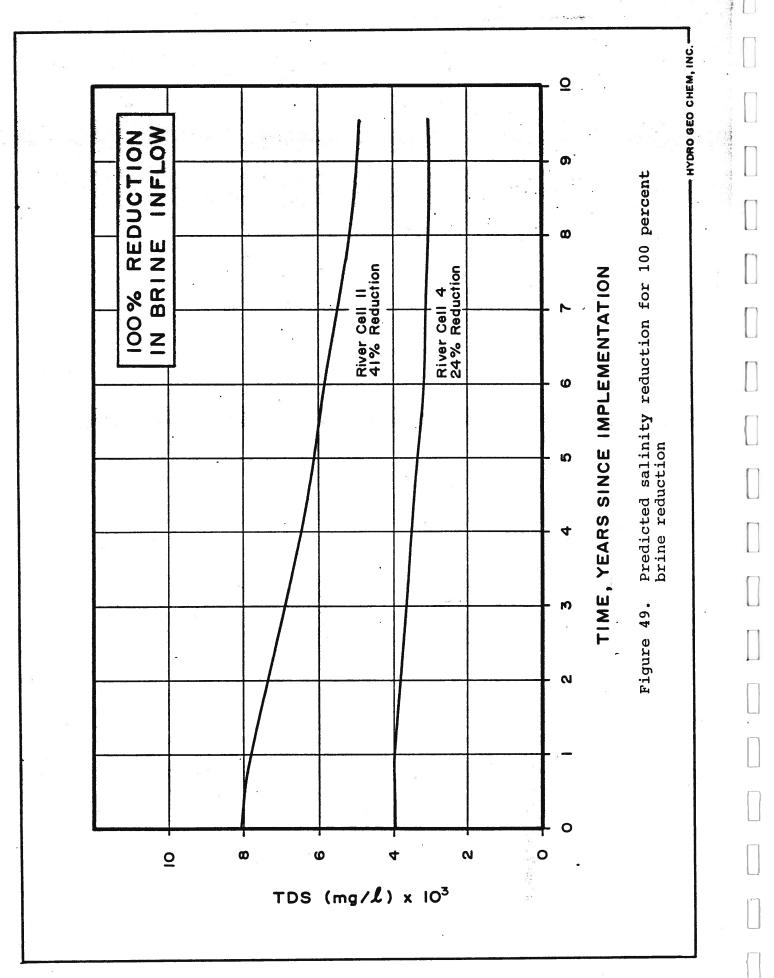
1. TDS concentration in the cells representing the channel deposits upstream of Revuelto Creek average 27,000 mg/l (as per the analysis from Piezometer Site 3).

2. TDS in the cell representing the Canadian River above Revuelto Creek average 11,000 mg/l.

3. TDS in cell 8, approximately where Piezometer site 6 is located, average 20,000 mg/l (as per the analysis from Piezometer Site 6).

4. The downstream concentration gradient in both surface-water cells and sediment cells decreases until the concentrations are equal at cell 4, which is the approximate location of the state line.


It was found that one value for the transfer coefficient would not allow all of the above criteria to be met. Calibration required that one high value be used for cells above Revuelto Creek and a low value for cells below Revuelto Creek. This is consistant with the movement of brine in the channel deposits. Upstream of the Revuelto Creek confluence brine may enter the surface water convectively as well as through dispersion. A high transfer coefficient accounts for this convective term. Below the confluence brine becomes more isolated from the surface water by density differences, which is simulated by decreasing the transfer coefficient in these cells.


A satisfactory calibration was obtained using transfer coefficients of 0.44 and 0.0014 ft/day, for cells above and below Revuelto Creek, respectively. The

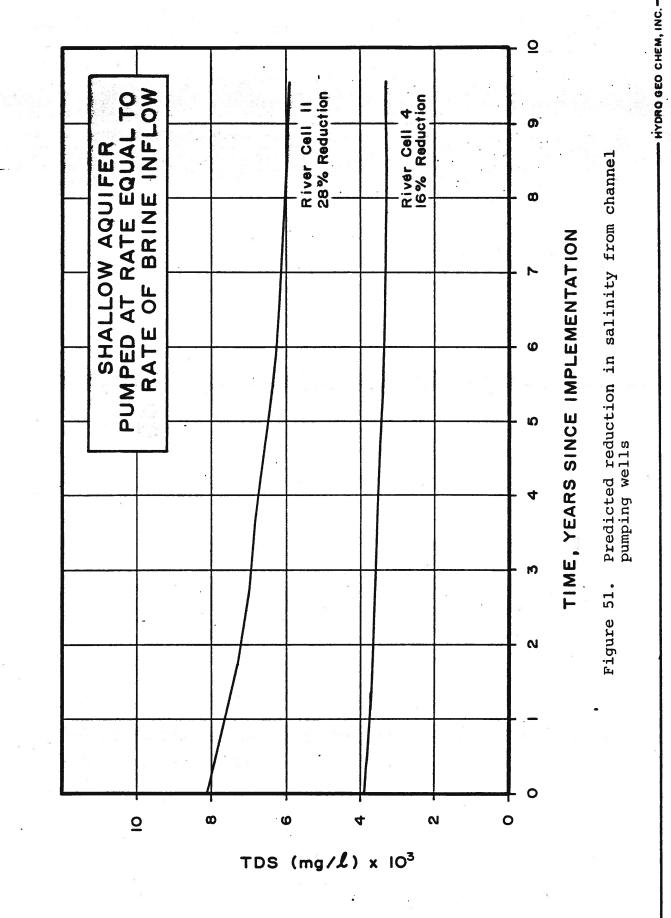
TDS concentrations in the sediment and river cells are shown in Figure 48. The river concentration is slightly lower than that measured in the cells receiving brine, while the sediment cells are slightly higher. This should result in conservative predictions of the effects of salinity reductions. Because the water was not diluted with further fresh water inflow below the state line cell, simulated concentrations are higher than measured in the downstream cells. This will not affect the predictions.

3. Model Prediction

The time effects on salinity from aquifer depressurization was tested in two First, to simulate the effects of shallow brine aquifer depressurization a ways. simulation was run using the initial steady-state conditions described above, but shutting off all the brine input to the sediment cells. Then, to simulate the effects of less than total depressurization efficiency, a simulation was run with only half of the brine stopped. Simulations were run for 10 years in all cases, becauses differences between various simulations would be apparent by that time. Figure 49 shows the reduction in salinity over time at cells representing the Canadian River (cell 11) above the confluence with Revuelto and at state line (cell 4) for a simulation of 100 percent brine flow reduction. The effect after 10 years depressurization is about 24 percent reduction in salinity in the river. The salinity in cell 4 was nearly equal to that in cell 2, adjacent to Lake Meredith. Within the river cells upstream, salinity was reduced 41 percent after There is no depressurization pumping rate used or inferred in the 10 years. _model.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION


Figure 50 shows the salinity reduction over time when the brine inflow is reduced by only 50 percent. We can see that the time for the system to respond is nearly the same, however the amount of salinity reduction is about half of that from the previous simulation.

The salinity reduction expected from pumping shallow channel wells was simulated by removing 0.9 cfs, a rate equal to the simulated brine inflow, distributed in 5 cells. This is equivalent to 5 wells pumping a rate of about 80 gpm each. The salinity reduction in two cells is shown in Figure 51. We can see that at this rate the salinity reduction is not quite equal to the reduction obtained from a 100 percent brine inflow (depressurization) reduction. This is because of the large volume brine storage in the channel deposits. Over a longer time period than 10 years, however, as sediment storage is depleted, the salinity reduction would be as great as for the 100 percent depressurization case.

Long-term salinity reductions, beyond 10 years, from a 100 percent brine inflow reduction program, would approach 70 percent of the total, which is our estimate of the amount of salt contributed by the shallow brine aquifer. If the long-term chloride concentration is 400 mg/l without any control measure, then the ultimate salinity level with control will be at a chloride concentration of about 120 mg/l.

The time necessary to achieve such a reduction can be estimated through extrapolation of the salinity reduction curve in Figure 49 to 100 percent reduction. At an average reduction rate of 2.4 percent per year, it would take 42 years for the Canadian River to completely reduce its salinity to 30 percent of

- HYDRO GEO CHEM, INC. -<u>0</u> River Cell 11 20% Reduction River Cell 4 12% Reduction INFLOW and the same a graded REDUCTION σ Predicted salinity reduction for 50 percent brine reduction ŗ Φ BRINE TIME, YEARS SINCE IMPLEMENTATION 50% ~ Z Q S 4 Ю Figure 50. 2 Ο <u>0</u> Ø Ø. 4 2 0 TDS (mg/L) x 10^3

its former value. The effect on Lake Meredith would be similar, although at a slightly slower rate.

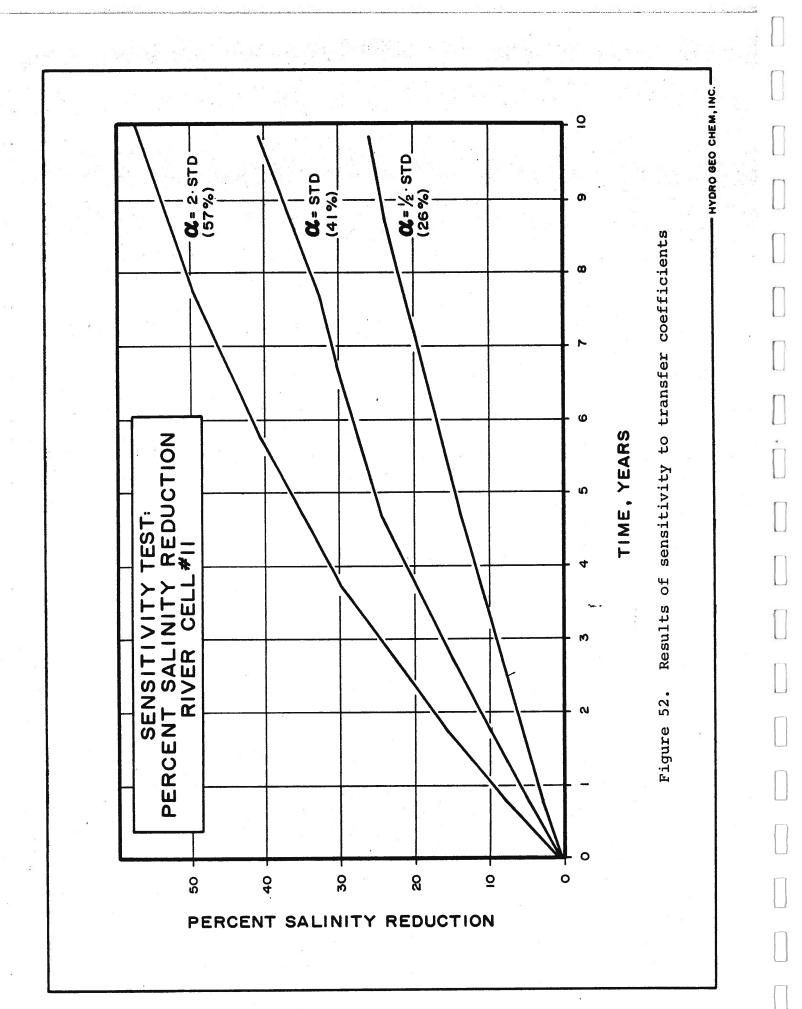
This calculation, of course, is conservative because the the important mechanism of flood-flow transport of salt is neglected. However, with the planned increase in Ute Reservoir storage, these flows will probably less frequent in the future. We cannot estimate the flushing rate if flood flows are considered.

4. Model Sensitivity

Uncertainties in our estimation of hydrologic parameters give rise to errors in the prediction. A test of the effects of uncertainty in the parameters is to vary each parameter individually within its plausible range and run model simulations with each of these variations. The change in the prediction resulting from a change in a particular parameter is a measure of the sensitivity of the prediction to that parameter. If the sensitivity is small, when we can conclude that even if the parameter is poorly estimated, the prediction will not be badly affected by errors. On the other hand, if the sensitivity is large, then an error in the parameter will lead to large errors in the prediction. This procedure is called a sensitivity analysis.

In the sensitivity analysis we have considered possible errors in the hydraulic conductivity of the channel sediments and in the transfer coefficient. The effect of varying the hydraulic conductivity between 10 and 60 ft/day on the prediction from aquifer depressurization was very small. This is partly because of actual insensitivity and partly because of the model formulation, which has a

FINAL REPORT


LAKE MEREDITH SALINITY INVESTIGATION

low fixed hydraulic gradient that corresponds to the physical setting of the river. Nearly the same insensitivity held true for cases in which the sediment cells were pumped.

Because the steady-state simulations were relatively insensitive to the values of the transfer coefficient, we consider this parameter poorly estimated. Therefore we varied it two times larger and two times smaller than the steady-state values, and re-ran the simulation for 100 percent brine inflow reduction. The results were plotted as percent salinity reduction over time for all three simulations at river cell number 11, and are shown in Figure 52. We can see that the sensitivity of the prediction to this parameter is high, with a variation in salinity reduction of from 26 percent to 57 percent. It should be noted that these transfer coefficients are slightly beyond the plausible range, because each resulted in worse steady state salinity distributions than was obtained with the standard transfer coefficients.

5. Conclusions Based on Model Simulations

Because the shallow brine aquifer was not implicit to the model, we could not simulate brine aquifer pumping rates. Therefore a comparison between the two proposed salinity reduction methods based on required pumping rates was not possible. However, the salinity reduction results from either aquifer depressurization or channel sediment pumping are similar if the brine flow rate can be completely stopped. Shallow channel wells would probably yield more rapid results because confining units between the brine aquifer and the channel sediments would result in time lags, not considered in the model. However, over several years, this

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

effect would diminish. Also, the rate of pumping from channel wells would have to be slightly more than the brine inflow rate to achieve the same results as complete aquifer depressurization. In either case, there would be no short-term rapid reduction in salinity.

Whether channel wells or depressurization wells would yield superior salinity-reduction results cannot be unequivocally determined by these simulations. Their relative efficiencies in reducing river salinity was shown. We can conclude that, if the brine aquifer can be depressurized to a level below the bottom of the channel sediments, it will result in a salinity reduction as shown in Figure 49. Furthermore, if pumping from the channel sediments exceeds the brine inflow rate, similar long-term salinity reductions could be achieved.

The number of wells that would be required in either salinity reduction scheme cannot now be calculated with the available information. However, we estimate that at least two shallow brine aquifer depressurization wells would be necessary to cover an area which would extend from Ute Dam to Revuelto Creek. The locations of shallow channel wells should be adjacent to and downstream of the three high salinity zones identified in the channel. Thus about six wells may be required. The necessary pumping rate from any of the wells would depend on the hydraulic characteristics encountered; thus several aquifer tests would need to be conducted. HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

FEASTBILITY OF DEEP-WELL INJECTION

In the Bureau of Reclamation (1979) report the feasibility of surface disposal of brines was evaluated. Since that report, there has been increased interest in deep-well disposal in the area because of piping and land costs and long-term environmental effects from a surface disposal site.

The general criteria for evaluating the feasibility of deep-well disposal of brines are: first, that a horizon of suitable hydraulic characteristics can be found at an economical distance and depth; second, that the horizon is adequately isolated such that other aquifers are protected; third, that other economic uses are not jeopardized. To our knowledge there are no deep injection wells within the detailed study area, but there are many in the Panhandle portion of the study area that are used for oil-field brine injection and for water-flood operations. It is recognized that additional data collection, in the form of surface geophysical surveys and, probably, test drilling, is necessary in this area to assess its suitability for injection. However, enough information is available to comment on its potential in the Logan area.

1. Hydraulic Characteristics

Potable water exists throughout the Triassic Formation in the detailed study area, as well as in Ute Reservoir, and, marginally, in Revuelto Creek and the Canadian River. The lower Triassic as well as all deeper formations contain brackish to briny water. The disposal horizon must be isolated from any unit in contact with these sources of potable water, as well as from the brine aquifer.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Therefore we can exclude Triassic and the Permian Artesia or laterally-equivalent formations. The Permian San Andres offers a potential horizon because of its permeability. Drillers logs of the Ute Anticline No 1 well (see Table 1) mention lost-circulation zones within the formation. However, because of its shallowness, (see Table 2) the San Andres may not offer sufficient separation from potable water sources. In addition, the fracture systems or faults which allow the brine to move into the Canadian River channel may be related to salt dissolution in the The Glorieta San Andres, thus permitting upward leakage of the injected brines. appears to be discontinuous in the area, or becomes dolomitic and salt-prone, so it is not anticipated that it would be a good horizon. The Yeso represents about 1500 feet of generally low permeability shales, siltstones, sulfate and carbonate rocks. If a higher permeability zone, such as equivalents of the Tubb or Fullerton sands, is found in the middle- to lower-Yeso, it may represent a suitable injection horizon. However the zone may be too thin (probably between 35 and 170 feet) to provide sufficient transmissivity.

The lower Permian- Pennsylvanian section is about 2500 to 3000 feet below land surface in the detailed study area. The Abo and "granite wash" potentially offer a good disposal horizon for brines. Examination of drillers and geophysical logs from several wells in the vicinity of Logan show that there is between 500 and 1000 feet of combined Abo-Sangre de Cristo thickness. It is predominantly a poorly-sorted, clay-rich, arkosic sandstone, with interbedded shale and siltstone. Because of its thickness and depth, its confinement by the overlying Yeso, and potentially high transmissivity, this sequence is the most promising horizon for brine disposal.

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Drill-stem tests (DST), not available to us, may have been run on many of the deep wells in the area. The Ute Anticline No I well was tested in the San Andres and Yeso (Nat. Oil Co., Denver, pers. com.). No tests of the Abo or Sangre de Cristo were run. In the absence of such information, we should assume that pressures are lithostatic, the above-mentioned lost circulation zones notwithstanding, and fluids may flow at the surface from wells drilled in the Permian or Pennsylvanian formations.

2. Conflicts with Other Economic Uses

Most of the subsurface information in the study area came from unsuccessful oil or gas holes. To our knowledge no active or capped oil or gas wells are located in the detailed study area. Because the area has a history of unprofitable drilling there is probably little potential for any significant hydrocarbon discoveries or extensive drilling activity.

Drilling for carbon dioxide is a potential economic activity in the area. Foster and Jensen (1972) show existing CO_2 fields north of the Canadian River in Harding and Union counties, but none within the study area. Producing zones range from Precambrian to Triassic. Two wells within the study area were seen to evolve gas. The Dripping Springs well bubbles slightly with an odorless gas; we noticed during sampling of well OW-3 that it was somewhat charged with gas, confirmed by the lab to contain CO_2 .

Uranium has been found within the study area, but only within the Chinle or Morrison formations (Finch, 1972). There are a number of prospects but currently

126,

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION no active mining. There seems little potential for conflict with any proposed deep well disposal.

Capturing brine flow by depressurization or channel pumping may cause flow in the Canadian River to be reduced, or even eliminated during low flow periods in the Logan area. Despite the poor quality, cattle drink from this source. It may be possible to augment flow by releasing an amount from Ute Dam equal to the amount being pumped, probably 1 to 2 cfs.

3. Recommendations

Further effort should be made to locate DST and fluid pressure data obtained during test-well drilling. With these data possible injection zones, indications of required injection pressures, and zone correlations can be determined. Also, more work needs to be done on geophysical log interpretation and correlation, particularly for units below the San Andres. Surface geophysics have not been run in the vicinity of Logan (except for the resistivity and seismic refraction surveys conducted by the Bureau), but have been run south of and to the Ute Anticline well. The data from these surveys are available for inspection from Permian Exploration Co. of Roswell, New Mexico and from other seismic operators in the region. If these data prove useful, they should be purchased and used for subsurface analysis.

In concert with this work, we recommend that surface geophysical surveys be conducted in the vicinity of Logan. Seismic reflection surveys are recommended because this type of geophysics can determine lateral discontinuities of the

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

units, a very important consideration in subsurface injection studies. The line locations should be south of the Canadian River because the Abo and Sangre de Cristo thicken in that direction. The survey can be tied into the Ute Anticline well either directly or through the use of synthetic seismic profiles generated from the geophysical logs obtained for the test well.

If promising zones are identified in the survey, one or two test holes should be drilled to intercept the zones. Such drilling must be designed carefully so that the maximum hydrogeologic information can be obtained. Potential injection intervals should be cored so that fractures, bedding, and solution openings can be identified, and so that lab measurements of porosity and permeability can be made. In the Abo or Sangre de Cristo, sidewall cores should be considered. Geophysical well logs (acoustic, caliper, temperature, neutron, resistivity, gamma, density), sample logs and drillers logs should be obtained and analyzed from these test wells.

The design of drill stem tests (DST) is the most important consideration. The DST configuration and implementation must allow for accurate measurement of permeability and fluid pressure, as well as allow for uncontaminated fluid samples. These tests will be a rather time-consuming operation, so sufficient testing and stand-by time must be allocated. Computations of injection rates and pressures should be made with these values, as well as the compatibility of injection and formation fluids. The feasibility of drilling one or more injection wells or the rejection of the option of deep-well disposal will depend on these computations in concert with the formation evaluations done using the log data.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

REFERENCES

- Bassett, R.L., M.E. Bentley. 1983. Deep brine aquifers in the Palo Duro Basin: regional flow and geochemical constraints. Report of Investigations No. 130, Texas Bureau of Economic Geology, University of Texas at Austin. 59 p.
- Bendix Field Engineering Co. 1981. Uranium hydrogeochemical and stream sediment reconnaiassance of the Tucumcari NIMS quadrangle, New Mexico/Texas. Report GJEX-183(81). Grand Junction, Colorado.
- Berkstresser, Charles F. and Walter A. Mourant. 1966. Ground-water resources and geology of Quay County, New Mexico. Ground-Water Report No. 9, State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro.
- Budnik, R. and D. Smith. 1982. Regional stratigraphic framework of the Texas panhandle. In Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle. Texas Bureau of Economic Geology, University of Texas at Austin. 38 p.

Chow, Ven Te. 1964. Handbook of applied hydrology. McGraw-Hill, New York.

Craig, H. 1961. Isotopic variations in meteoric waters. Science. vol 133.

- Davis, S.N. and R.J.M DeWeist. 1966. Hydrogeology. John Wiley and Sons. New York.
- Dobrovolny, Ernest, C.H. Sumerson and R.L Bates. 1946. Geology of northwestern Quay County, New Mexico. U.S.G.S. Oil and Gas Investigations Map OM-62.
- Dutton, S.P., Robert J. Finley, W.E. Galloway, Thomas C. Gustavson, C. Robertson Handford, Mark W. Presley. 1979. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. A Report on the Progress of the Nuclear Waste Isolation Feasibility Studies (1978). Geologic Circular 79-1, Bureau of Economic Geology, University of Texas at Austin. 99 p.
- Finch, Warren. 1972. Uranium in eastern New Mexico. New Mexico Geological Society Twenty-Third Field Conference Guidebook.

HYDRO GEO CHEM, INC. FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Foster, R.W. and J.G. Jensen. 1972. Carbon dioxide in northeastern New Mexico. New Mexico Geological Society Twenty-Third Field Conference Guidebook.

Foster, R.W., R.M. Fentress and W.C. Riese. 1972. Subsurface geology of eastcentral New Mexico. New Mexico Geological Survey Spec. Pub. No. 4

Griggs, R.L. and G.E. Hendrickson. 1951. Geology and ground-water resources of San Miguel County, New Mexico. Ground-Water Report No. 2 State Bureau of Mines and Mineral Resources, New Mexico Institute of

- Gustavson, T.C., R.L. Bassett, R. Budnik, R.J. Finley, A.G. Goldstein, J.H. McGowen, E. Roedder, S.C. Ruppel, R.W. Baumgardner, Jr., M.E. Bentley, S.P. Dutton, G.E. Fogg, S.D. Hovorka, D.A. McGookey, P.J. Ramondetta, W.W. Simpkins, D. Smith, D.A. Smith, E.A. Duncan, J.A. Griffin, R.M. Merritt, and E.R. Naiman. 1982. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. A Report on the Progress of Nuclear Waste Isolation Feasibility Studies (1981), Texas Bureau of Economic Geology, University of Texas at Austin. 211 p. p.s 1
- Handford, C. Robertson, Shirley P. Dutton, and Paul E. Fredericks. 1981. Regional cross sections of the Texas Panhandle: Precambrian to Mid-Permian. Texas Bureau of Economic Geology, University of Texas at Austin. 8 p.
- Kelley. V.C. 1972. Geology of the Santa Rosa area. New Mexico Geological Society Twenty-Third Field Conference Guidebook.
- Kottlowski, F.E. 1969. State Bureau of Mines and Mineral Resources, Socorro, New Mexico. Letter to Mssrs. W. Mourant, Z. Spiegel, and C.B. Read.
- McGookey, D.A. and A. G. Goldstein. 1982. Structural influence on deposition and deformation at the northwest margin of the Palo Duro Basin. In Geology and Geohydrology of the Palo Duro Basin, Texas Panhandle. Texas Bureau of Economic Geology, University of Texas at Austin.
- McGowen, J.H., G.E. Granata, and S.J. Seni. 1979. Depositional framework of the Lower Dockum Group (Triassic) Texas Panhandle. Report of Investigations No. 97, Texas Bureau of Economic Geology, University of Texas at Austin.
- New Mexico State Engineer's Office. 1961. Preliminary report on the geology of the Ute Damsite, Quay County, New Mexico. Canadian River Storage Sites Investigation, Ute Reservoir, Quay County, New Mexico.

FINAL REPORT

- Presley, Mark W. and Kathy A. McGillis. 1982. Coastal evaporite and tidal-flat sediments of the Upper Clear Fork and Glorieta Formations, Texas Panhandle. Report of Investigations No. 115, Texas Bureau of Economic Geology, University of Texas at Austin.
- Spiegel, Zane. 1957a. Preliminary evaluation of geology and hydrology of the Dunes Dam and reservoir site on the Canadian River, Quay County, New Mexico. New Mexico State Engineer's Office. Memorandum dated March 25.
- Spiegel, Zane. 1957b. Geologic map of the Dunes reservoir site, Canadian River, Quay County, New Mexico. Office of the State Engineer, Santa Fe, New Mexico. 2 sheets, scale 1:16500.
- Spiegel, Zane. 1969. Reservoir leakage under the spillway of Ute Dam, Quay County. Memorandum to Peter Shoenfeld, Attorney, Office of the State Engineer, Santa Fe, New Mexico. Dated January 16.
- Spiegel, Zane. 1972a. Problems of the Triassic stratigraphy in the Canadian River Basin, Quay, San Miguel, and Guadalupe Counties, New Mexico. New Mexico Geological Society Twenty-third Field Conference Guidebook.
- Spiegel, Zane. 1972b. Cenozoic geology of the Canadian River Valley, New Mexico. New Mexico Geological Society Twenty-third Field Conference Guidebook.
- Stearns, D.W. 1972. Structural interpretation of fractures associated with the Bonita Fault. New Mexico Geological Twenty-third Field Conference Guidebook.
- Texas Water Quality Board. 1970. Canadian River water quality survey, Logan, New Mexico to Tascosa, Texas. Canadian River Project Preliminary report 527. Austin.
- Trauger, F.D. and F.X. Bushman. 1964. Geology and ground water in the vicinity of Tucumcari, Quay County, New Mexico. New Mexico State Engineer. Sanmta Fe.
- Union Carbide Corp. 1979. Hydrogeochemical and stream sediment reconnaissance basic data for Amarillo NIMS quadrangle, Texas. Report K/UR-125. Oak Ridge, Tennessee.
- U.S. Bureau of Reclamation. 1975. Interim progress report of investigations, Lake Meredith Salinity Study. Southwest Region, Amarillo, Texas.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

- U.S. Bureau of Reclamation. 1976. Report on electrical resistivity and seismic refraction surveys, Canadian River, Lake Meredith Salinity Study. Engineering and research center.
- U.S. Bureau of Reclamation. 1979. Lake Meredith salinity study. Appraisal level investigation of the Canadian River, Texas-New Mexico. Southwest Region, Amarillo Texas.
- Walker, F.C., and W.H. Irwin. 1958. Report concerning geologic and engineering feasibility, Dunes Dam site, Canadian River Project, New Mexico. State Engineers Office, Santa Fe.

Wanek, A.A. 1962. Reconaissance geologic map of parts of Harding, San Miguel, and Mora counties, New Mexico. U.S. Geological Survey OM Map-208.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

APPENDIX A

WATER LEVEL MEASUREMENTS

10.1

Table A.1: Water levels in wells within New Mexico portion of study area Depths and elevations rounded to nearest foot. Formation symbols and data sources explained at end of table.

Well No.		Forma- I tion	and-Surf. Elev.	Well Depth	Water-Leve Elev.	l Date (mo/yr)	Source
	10.33. 7.234	Trc	3950	114	3 895	3/55	1
	10.33.12.222	Qc?	4027	30	4004	2/55	1
	10.33.12.422	Trc	4045	188	3969	2/55	1
	10.33.23.441	Qc?	4100	51	4 079	2/55	1
	10.33.25.131	QC	4050	35	4017	2/55	1
	10.33.36.333	Qc?	4225	84	41.82	2/55	1
	10.34. 6.444	Trc	4045	124	3998	3/55	1
	10.34.10.233	Trc	4030	270	3990	48	1
	10.34.10.233a	Trc/Trsr	: 4030	500	3990	48	1
	10.34.17.222	Trc	4060	124	4003	2/55	1
•	10.34.17.441	Trc	4100	220	3997	2/55	1
	10.34.19.221	Trc	4102	232	39 58	2/55	1
•	10.34.21.113	Trc	40 80	231	3980	-	1
	10.34.22.132	Trc	40 85	200	3983	2/55	1
	10.34.28.412	Qc?	4090	72	4044	12/54	1
	10.34.30.332	Qc?	4200	53	4169	2/55	1
	10.34.33.333	QC	4130	44	40 89	2/55	1
•	10.34.35.111	Qc	4100	27	4074	12/54	1
	10.34.36.433	QC	4118	33	40 86	12/54	1
	10.35. 1.333	Trc	3985	69	3946	11/54	1
	10.35. 4.333	Trc?	3970	71	3948	11/54	1
	10.35. 5.222	Trc	4013	24	3993	11/54	1
	10.35. 5.222a		4013	89	3998	54	1
	10.35. 6.111	Qal	4050	40	4020	2/55	1
	10.35. 9.424	Qal	3945	45	3933	11/54	1 1
	10.35.13.221	Qal	3940	37	3905	11/54	1
	10.35.14.334	Trc	3975	220	3872	11/54	1
	10.35.22.121	Trc	4000	153	3970	-	1
	10.35.28.211	Trc		200	•		1
	10.35.29.222	Trc	3990	123	3939	5/56	1
	10.35.29.222a		3995	225	3960	_	1
	10.35.34.220	Qal		22		-	1
	10.36. 1.224	Qal	3 850	28	3832	11/54	1 1 1 1 1
	10.36. 3.224	Trc	3901	57	3884	1/53	1
	10.36. 3.442	Trc	3939	59	3952	8/53	1
	10.36.13.211	Trc		72		-	1
	10.36.14.211	Trc	3910	17	3 896	11/54	1
	10.36.14.311	Trc	3909	77	3889	8/53	1
	10.36.21.223	Trc	3930	71	3889	11/54	1
	10.36.26.222	Trc	3930	72	3 897	12/54	
	10.36.26.332	Qal	3920	21	3901	8/53	1
	10.37. 7.412	Qal	3 880	49	3854	12/54	1
	10.37.18.122	Trc	3975	154	3 897	12/54	1
	10.37.19.343	Trc	4010	95	3964	8/53	1
	10.37.30.110	Trc	4040	200	3900	-	1
	11.32. 3.424	Trc	4023	144	3926	51	1

[

[

ß

LAKE MEREDITH SALINITY INVESTIGATION

Table A.1: Continued

Well No.		Forma- tion	Land-Surf. Elev.	Well Depth	Water-Level Elev.	Date (mo/yr)	Source
	11.32. 4.420	Trc	4028		3923	7/48	1
	11.32. 5.220	Trc	4000	140	3878	7/48	1
	11.32. 7.135	Trc	4065	180	3843	7/48	1
	11.32. 7.244	Trc	4015	200	3875	-	1
	11.32.10.333	Trc	4013	136	3901	3/55	1 1
	11.32.11.111	Trc	4025	300	4011	3/55	1
	11.32.11.113	Trc	4030	125	3990	7/48	1 1
					4005	55	·1
	11.32.11.430	Trc	4016	145	3871	2/46	1
	11.32.12.333	Trc	4004	160	3878	7/48	ī
	11.32.13.130	Trc	4002	_	3924	9/44	ĩ
	11.32.13.333	Trc	3969	124	3858	11/54	ī
	11.32.14.444	Trc	3970	112	3877	11/54	î
	11.32.15.444	Trc	3965	105	3903	7/48	i
			· ·	160	3857	// 40	i
	11.32.17.343	Trc	4002			-	i
	11.32.17.343a		402	204	3882	2/55	1
	11.32.19.424	Trc	3993	400	3914	3/55	
	11.32.19.424a	-	3992	185	3912	3/55	1
	11.32.19.442	Trc	3991	165	3926	-	1
	11.32.20.121	Trc	3995	164	3926	7/48	1
	11.32.21.112	Trc	3974	200	3916	1/54	1
	11.32.21.311	Trc	- 3972	-	3914	7/48	1
	11.32.23.443	Trc	3930	120	3 870	-	1
	11.32.24.211	Trc	3 893	165	3781	2/46	1
	11.32.24.323	Trc	3925	107	3847	3/55	1
	11.32.25.333	Trc	3920	150	3880		1
	11.32.28.434	Trc	3972	145	3907	-	1
	11.32.28.434a	Trc	3972	180	3907	-	1
	11.32.30.422	Trc	3994	188	3918	3/55	1
	11.32.32.433	Trc	3987	83	3979	4/55	1
	11.32.34.442	Trc	3950	76	3 896	4/45	ī
			0,000		3937	3/55	ī
	11.32.34.444	Trc	3956	200	3816	-	ī
	11.33. 3.124	Qal	3850	20	3838	2/55	1 1
	11.33.13.424	Trc	4105	40	4078	2/55	î
	11.33.23.242	Trc	40 87	44	4068	2/55	ī
	11.33.25.443	Trc	4000	125	3 8 8 0	2/55	1
			4040	47	4024	2/55	1 1 1 1
	11.33.28.232	Trc		78		2/33	1
	11.33.28.334	Trc	3980		3954	2/55 2/55	1
	11.33.28.341	Trc	4025	54	3987		1
	11.33.35.242	Trc	4000	31	3976	2/55	1 1 1 1 1 1
	11.34. 2.333	Trc	4195	109	4126	11/54	Ţ
	11.34. 5.433	Trc	4205	111	4124	3/55	Ţ
	11.34. 6.314	Trc	4127	50	40 87	2/55	Ţ
	11.34.11.224	Trc	4195	84	4147	11/54	Ţ
	11.34.12.112	Trc	4195	78	4149	11/54	1
	11.34.15.111	Trc	4175	73	4157	11/54	1
	11.34.15.224	Trc	4220	133	4128	2/55	1

FINAL REPORT

ell No.	Location	Forma- Li tion	and-Surf. Elev.	Well Depth	Water-Leve Elev.	l Date (mo/yr)	Sourc
	11.34.18.211	Trc	40 80	68	4002	46	1
]	11.34.26.113	Qc/Trc	4080	60	4053	2/55	1
]	11.34.31.442	Trc	4035	56	4018	3/55	1
]	11.34.33.143	Trc	4060	108	4097	2/55	1
]	L1.34.33.144	-	4060	135	4035	-	1 1 1 1 1
]	11.35. 1.114	Trc	4050	16	4038	11/54	1
]	1.35.13.133	Trc	4095	44	4060	11/54	1
]	L1.35.14.224	Trc	4115	82	4058	11/54	1
	1.35.23.222	Trc	4076	54	4050	11/54	1 1 1 1 1
	1.35.25.333	Qal	4000	-	3985	5/53	1
	L1.35.26.133	Trc	4135	122	4038	11/54	1
	11.35.28.433	Trc	4015	70	3987	11/54	1
	11.35.29.121	Qc/Trc	4100	66	4054	_	1
	11.36.15.424	Trc/Trsr		270	3695	51	1
	11.36.16.320	Trc/Trsr	3900	238	3704	11/54	1
	11.37.17.320	Trsr	3847	800	3647		ī
	11.37.17.321	Trsr	3860	264	3660	53	ī
	11.37.18.421	Ţrsr	3 850	250	3830	53	ī
	11.29.26.212	Je	4090	40	4063	6/55	1 1
	12.31. 2.444	Trc	4049	206	3989	-	ī
	12.31.31.122	Trc	4070	75	4027	6/55	1 1 1 1
	12.31.34.212	Trc	4070	135	4065		1
			3983	278	3799	9/53	° 1
	12.32. 1.422b				3934	9/53	1
	12.32. 1.433	Qc?	3990	60		3/ 33	1 1
	12.32. 4.444	Trc	4090	195	3937	2/55	i
	12.32. 6.421	Trc	3914	112	3809	3/55	1
	12.32. 7.334	Trc	4058	200	3878		1
	12.32. 8.313	Trc	4020	200	3917	3/55	1
	12.32. 9.224	Trc	4110	249	4010	_	1
	12.32.11.444	Trc	4040	220	3911	8/55	1
	12.32.12.221	Trc	3993	60	3952	9/44	· 1
	12.32.13.111	Trc	4016	150	3936	-	1 1 1
	12.32.15.412	Trc	4050	198	3900	-	1
	12.32.19.111	Trc/Trsr		265	3880	_	
	12.32.20.422	Trc	4072	213	3879	3/55	1
					3880	4/57	1
	12.32.21.244	Trc	4050	192	4018	-	1
	12.32.23.111	Trc	4021	177	3907	3/55	1
	12.32.24.211	Trc	4038	215	3911	3/55	1
	12.32.25.213	Trc	4062	173	3964	3/55	1
	12.32.30.333	Trc	4151	3 80	3901	-	1
	12.32.33.224	Trc	4055	395	3880	-	1 1 1 1 1 1 1 1
	12.32.35.224	Trc	4049	183	3995		1
	12.33. 4.411	Trc	3907	95	3900	3/55	1
	12.33. 4.411a		3905	85	3880	9/44	ī
	12.33. 5.333	Trc	3976	80	3921	1/47	ī
	12.33. 5.434	Trc	3945	72	3922	1/47	ī
	140JJ0 J07J9	110	3343		3935	3/55	ī

1

0

T

C

[

[

C

FINAL REPORT

Table A.1: Continued

Well No.		Forma- La tion	and-Surf. Elev.	Well Depth	Water-Leve Elev.	1 Date (mo/yr)	Source
	12.33. 6.421	Trc	3967	67	3923	9/44	1
					3936	3/55	1
	12.33. 7.124	Trc	3975	218	3904	10/54	1
	12.33. 9.224	Trc	3 850	69	3788	_	1
	12.33. 9.242	Qc/Trc	3 860	69	3846	-	1
	12.33.16.111	Trc	3900	126	3830	51	
	12.33.17.311	Trc	3958	77	3 898	3/55	1 1
			0000	••	3900	4/57	ī
	12.33.27.344	Qal	3780	25	3769	2/55	ī
	12.33.34.221	Qal	3790	18	3773	2/55	î
	12.33.36.324	Trc	4255	105	4176	2/55	ī
	12.34. 5.412	Qal	4000	18	3988	-	î
		Trc/Trsr		250	3730	8/53	i
	12.34. 6.113					•	1
	12.34.11.212	Trc/Trsr	3975	283	3749	11/54	1 1
	12.34.31.134	Trc	4300	113	4220	-	
	12.34.35.331	Trc	4120	23	4102	11/54	1
	12.34.36.433	Qal/Trc	4143	44	4128	6/55	1
	12.34.36.434	Qal/Trc	4140	42	4128	6/55	1
	12.35. 2.111	Trc	3840	167	37 85	4/56	1
	12.35. 7.243	Trc/Trsr		258	3734	5/56	1
	12.35.15.323	Trc/Trsr	3960	279	3724	10/54	ŀ·
	12.35.20.333	Trc	4250	200	4165	-	1
	12.35.25.123	Trc/Trsr	4000	300	3715	12/39	1
	12.35.26.233	Trc/Trsr	3965	244	3846	10/54	1
	12.35.29.143	Trc	41.85	35	4163	11/54	1
	12.35.32.434	Trc	4150	90	40 80	—	1 1
	12.35.35.422	Trc	4030	21	4009	11/54	1
	12.36. 2.112	Trsr	3860	165	3760		ī
	12.36.10.224	Trsr	3925	175	3762	-	ī
	12.36.10.434	Trsr	3975	227	3788	-	ĩ
	12.36.11.333	Trc	3965	60	3921	11/54	i
	12.36.14.311	Trsr	3950	285	3690	10/55	i
				20	3924	11/54	i
	12.36.18.242	Trsr	3940			11/54	1
	12.36.29.132	Qal	3960	20	3944		
	12.36.29.242	Trsr	4000	296	3719	11/54	1
	12.36.33.222	Trsr	3900	250	3668	-	1
	12.36.34.142	Trsr	3950	540	3715	_	Ţ
	12.37.18.424a		3900	209	3702	10/54	1
	12.37.18.442	Trsr	3 880	193	3707	10/54	1
	12.37.19.133	Trsr	3950	250	3725		1
	12.37.30.133	Trsr	3900	225	3695	-	1
	12.37.30.422	Trsr	3 850	150	3720	-	
	13.31. 1.124	Qal/Trc	3900	50	3 860		1
	13.31.25.344	Trc	4025	140	3 899	18	1
	13.31.26.123	Trc	3950	195	3 800	-	1
	13.31.26.244	Trc	4025	85	3950	-	1
	13.31.34.244	Trc	3980	175	3828	-	1
	13.31.34.444	QC	4030	34	4018		ī

Table	A.1:	Continued
-------	------	-----------

Well No.		Forma- L tion	and-Surf. Elev.	Well Depth	Water-Level Elev.	l Date (mo/yr)	Source
	13.31.36.211	Qc	4011	76	3955	-	1
	13.32. 4.311	Trc	4000	279	3770	11/53	1
	13.32.14.211	Trc	3836	164	3717	11/53	1
	13.32.18.200	Trc	3875	223	3696	11/53	1
	13.33. 1.311	Trsr	3861	176	3745	5/54	1
	13.33. 2.122	Qc/Trsr	3900	700	3749	7/54	1
	13.33. 3.344	Tr?	3873	-	3742	61	2
	13.33. 3.444	Tr?	3866	-	3738	61	2
	13.33. 4.443	Tr?	3870		3741	61	2
	13.33. 5.244	Trc	3 890	138	3753	9/54	1
	13.33. 5.442	Trsr	3885	235	3680		1
			3913		3789	61	2
	13.33. 6.111	Tr?	3902	-	3813	61	2
	13.33. 8.444	Tr?	3833	-	3710	61	1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
	13.33. 9.222	Tr?	3867	-	3736	61	2
	13.33. 9.341	Tr?	3839	-	3714	61	2
	13.33.10.121	Tr?	3864	-	3736	61	2
	13.33.10.144	Tr?	3 829	-	3723	61	2
	13.33.10.222	Tr?	3857	-	3735	61	2
	13.33.10.332	Tr?	3818	_	3760	61	2
	13.33.11.111	Tr?	3862	_	3733	61	2
	13.33.11.144	Trsr	3812	244	3701	4/54	ĩ
	13.33.11.312	QC	3820	50	3790		ī
	13.33.11.322	Trsr	3817	241	3700	8/53	ī
	13.33.16.122	Tr?	3823	-	3711	61	2
	13.33.16.322	Tr?	3796	_	3699	60	2
	13.33.10.322	TT:	5790		3745	61	2
	12 22 24 412	Писти	2 00 2	151	3678	3/55	1 2 2 1 1 1 1 1
	13.33.24.412	Trsr Mrs (Mrsr	3802				1
	13.33.28.121	Trc/Trsr		77	3727	3/55	1
	13.33.33.124	Trsr	3972	211	3770	3/55	1
	13.34. 1.133	Trsr	3650	80	3590	8/53	1
	13.34. 4.134	Trsr	3760	140	3632		1
	13.34. 8.333	Trsr	3927	250	3694	8/53	1
	13.34.10.211	Trsr	3750	150	3635	- 0/52	
	13.34.17.444	Trsr	3960	320	3712	8/53	1
	13.34.20.333	Trsr	4000	287	3720	-	1 1
	13.34.22.311	Trsr	3900	240	3700	10/54	1
	13.34.23.432	Trsr	3840	222	3655	10/54	Ļ
	13.35. 5.113	Trsr	3677	93	3600	4/54	Ļ,
	13.35. 6.143	Trsr	3650	78	3590	4/54	Ļ
	13.35. 6.221	Trsr	3670	70	3610	-	1 1 1 1 1 1 1 1 1
	13.35.13.321	Trsr	3850	250	3630	-	1 1
	13.35.19.112	Trsr	3885	280	3615	5/56	1 1
	13.35.27.343	Trsr	3935	286	3675	10/54	1
	13.35.31.444	Trsr	3915	280	3657	10/54	1
	13.36.14.134	Trsr	3 800	185	3652	10/55	1
	13.36.20.332	Trsr	3810	285	3716	2/55 2/55	1 1
	13.36.27.332	Trsr	3847	167	3716		

1

[

ſ

ſ

[

[

1

E

E

Table A.1: Continued

Well No.	Location	Forma- I tion	and-Surf. Elev.	Well Depth	Water-Level Elev.	l Date (mo/yr)	Source
1	3.36.27.334	Trsr	3811	173	3717	11/54	1
1	3.37.30.343	Trsr	3975	365	3689	11/54	1
	4.32.24.222	Tr?	3977		3889	61	
	4.32.24.344	Tr?	3916	-	3 850	61	2
	4.32.24.444	Tr?	3914	-	3847	61	2
	4.32.25.242	Tr?	3900		3844	61	2
	4.32.36.422	Tr?	3 889		3840	61	2
	4.33.19.242	Tr?	3994	-	3872	61	2222222222222222222222211111111111
	4.33.19.344	Tr?	3942	_	3859	61	2
	4.33.20.244	Tr?	3994		3867	61	2
	4.33.29.444	Tr?	3929	_	3824	61	2
				_	3847	61	2
	4.33.30.123	Tr?	3928	_			2
	4.33.30.213	Tr?	3940		3856	61	2
	4.33.30.314	Tr?	3 899	-	3848	61	2
	4.33.31.112	Tr?	3 899	-	3861	61	2
	4.33.31.242	Tr?	3898	2	3826	61	2
	4.33.31.323	Tr?	3900	-	3832	61	2
	4.33.31.414	Tr?	3905	-	3803	61	2
	4.33.31.444	Tr?	3 91 5	-	3822	61	2
1	4.33.32.333	Tr?	3910	-	3822	61	2
1	4.33.32.444	Tr?	3928	-	3815	61	2
1	4.33.33.422	Tr?	3919	-	3 803	61	2
	4.34. 1.141	Qc/To	3930	100	3 840	— (*	1
	4.34. 5.422	Qc	3965	120	3 860	6/54	1
	4.34.13.141	Qc	3 885	130	3767	_	ī
	4.34.15.112	Qc	3920	100	3830		ī
	4.34.15.212	Qc	3921	125	3811	-	1
	4.34.16.111	Qc	3940	97	3853	5/54	ī
	4.34.21.332	Qc/Trsr	3870	100	3790	-	ī
	4.34.28.231	Qc/Trsr	3784	80	3714	· _	Ĩ
	4.34.29.121	QC/Trsr	3925	75	3855	_	ī
		Trsr	3742	135	3623	_	1
	4.34.34.243		3750	140	3627	_	ī
	4.34.35.244	Trsr		140	3744	5/54	i
	4.35. 3.313	Qc	3900			5/ 54	
	4.35. 4.222	QC	3 890	175	3735	-	1
	4.35.10.442	Qc/Trsr	3 880	165	3724	-	1
	4.35.16.131	Qc/Trsr	3800	151	3670	5/54	1
	4.35.28.231	Trsr	3722	150	3582		1
	.4.36. 6.113	QC	3 890	160	3745		1
1	.4.36. 7.111	QC ^a	3 840	165	3700		1
	4.36.10.111	Qc/Trsr	3 800	151	3672	4/54	1 1 1 1 1 1 1
1	4.36.11.122	Qc/Trsr	3770	175	3615		1
	4.36.12.122	Qc/Trsr	3770	165	3615		1
	4.36.12.434	Qc/Trsr	3725	145	3590	-	1
	4.36.25.233	Trsr	3730	80	3660		1
	4.36.28.234	Trsr	3710	73	3696	5/54	ī
	4.36.29.224	Trsr	3690	80	3620	_,	ī
	4.37. 6.311	Qc/Trsr	3740	190	3654	5/54	ī
		Yey IISL	J/ 70	130	2024	J/ J4	-

FINAL REPORT

Table	A.1:	Continued
-------	------	-----------

lell No.	Location	Forma- L tion	and-Surf. Elev.	Well Depth	Water-Level Elev.	L Date (mo/yr)	Source
	4.37. 6.324	Qc/Trsr	3740	220	3560		1
1	4.37.30.121	Trsr	3615	40	3585	-	1
1	5.34. 4.121	To	4279	86	4213		1
1	5.34. 5.224	To	4272	100	4202	-	1
- 1	5.34.11.432	То	41.85	65	4130	-	1
1	5.34.15.413	То	4220	205	4138	2/55	1 1 1 1
1	5.34.22.311	To	4155	60	4105	— ;	1
1	5.34.22.311a	To	4177	90	4097	-	1 (
1	5.34.25.334	To	40 85	65	4040	-	1
1	5.34.30.312	To	4112	32	4107	-	1 1
1	5.34.31.224	To	4050	30	4040	-	1
1	5.34.32.241	To	4040	69	3974	6/54	, 1
	5.35. 2.413	To	4131	182	3977	-	1
	5.35. 7.122	To	41.90	175	4035	-	1
	5.35.10.334	То	4175	179	4002	2/55	
	5.35.10.433	То	4152	180	4002		1
	5.35.14.211	То	4130	290	3900	-	1 1 1
	5.35.15.222	То	4127	190	3991	9/53	1
	5.35.20.443	To	4009	227	3950	5/54	ī
	5.35.21.334	To	4009	166	3963	8/53	ī
	5.35.22.133	To	4045	93	3961	5/54	ī
	5.35.24.310	To/Trsr	4035	180	3885	-	ī
	5.35.28.331	To/Trsr	3722	150	3592	-	ī
	5.35.33.344	To/Trsr	3910	165	3760	-	ī
	5.35.35.411	To/Trsr	3910	140	3777	_	ī
	5.36.10.224	To	3985	40	3965	-	
	5.36.22.211	To	3930	100	3 850	_	1 1
	5.36.24.312	Qal	3850	26	3835	4/54	î
	5.36.34.342	Trc	3 850	209	3675		ī
			4015	131	3 892	4/54	ī
	5.37. 6.311	To				4/ 34	1
	5.37.18.124	TO Opl/To	3925	68 21	3867	-	1 1 1 1 1
	.5.37.18.344	Qal/To	3 895 2 00 F	21	3879	-	1
	5.37.19.312	Qal Qal	3865	30	3852	-	1
	5.37.30.112	Qal/Qc	3840	35	3810		_
	.5.37.30.121	Qal/Qc	3820	53	3804	0/52	1
	6.34. 6.444	То	4550	230	4338	9/53	1
	6.34.19.112	То	4452	245	4346	6/54	, L
	6.34.21.222	То	4415	140	42.85	-	1 1
	6.34.22.233	То	4349	140	4215		1
	6.34.28.211	То	43 85	140	4251	9/53 2/55	1
	.6.34.33.111	То	4350	130	4237	2/55	1 1
	6.34.33.433	То	4255	84	41.82	9/53	1 1 1 1 1
	6.34.35.242	То	4235	265	3995	-	L 1
	.6.35. 3.133	То	4375	182	4211	-	1
	6.35. 3.312	To	4365	169	4205	-	1 1
	6.35. 3.422	То	4360	146	4229	8/53	1
	6.35. 4.321	To	4375	210	4224	8/53	1
٦	6.35. 9.314	То	4360	161	4209	45	1

1

1

Table	A.1:	Continued
-------	------	-----------

Well No.	Location	Forma- tion	Land-Surf. Elev.	Well Depth	Water-Leve Elev.	el Date (mo/yr)	Source
	16.35.24.134	То	4227	102	4170	9/53	1
	16.36. 4.224	To	4368	207	4195	12/53	1
	16.35. 6.113	To	4410	160	4260		
	16.35. 6.441	To	4350	110	4251	5/54	1
	16.35.11.144	To	4206	81	4125	9/53	1
	16.36.14.134	To	41.88	108	4123	9/53	1
	16.36.15.432	To	4196	111	4135	9/53	1
	16.36.15.441	To	417 7	53	4124	9/53	1
	16.36.18.444	To	4265	120	4155	9/53	1
	16.36.20.212	To	4223	58	4143	9/53	1
	16.36.20.222	To	4197	58	41 41	9/53	1
	16.36.20.422	To	4197	120	40 83	9/53	1
	16.36.21.234	To	4167	35	4137	9/53	, 1
	16.36.22.213	To	41.87	103	4135	1/53	1
	16.36.23.121	То	41.45	110	4048	3/54	1 1 1
	16.36.23.123	To	4110	37	40 89	3/54	1
	16.36.26.333	То	4100	87	4055	5/54	1
	17.34. 3.140	То/Кр	4714	235	451.4	-	1
	17.34.10.433	To/Kp	4710	150	4510	10/53	1 1 1 1
	17.34.22.414	To	4562	200	43 87	-	1
	17.34.26.234	To	4580	245	4360	-	1
	17.34.28.244	To	4550	170	4400	-	1
	17.34.33.343	To	4555	225	4345	-	1
	17.35. 4.424	To/Kp	4530	230	4330	-	1
	17.35. 8.111	To	4515	219	4311	-	1
	17.35. 9.131	To	4480	210	4290	-	1 ;
	17.35. 9.243	To	4465	230	4292	-	1
	17.35.19.421	Trc	4560	300	42.85	-	1
	17.35.23.341	To	4410	155	4310	-	1
	17.35.24.322	То	4360	109	4265	-	1
	17.35.30.211	To	4470	151	4321		
	17.35.32.424	To	4400	204	4210	-	1
	17.36. 3.142	To/Kp	4430	250	4195	-	1
	17.36. 7.222	Jm/Trc		428	4217	38	
	17.36.13.120	To	4350	210	4150	-	1
	17.36.15.332	To	4370	190	4195	-	1
	17.36.21.312	To	4318	135	4207	9/53	1 1 1 1 1
	17.36.28.431	To	429 5	142	4176	12/53	1
	17.36.32.341	То	4325	156	4178	9/53	1
	17.36.34.240	То	4278	140	4152	9/53	1
	18.34.15.422	To/Kp	4760	174	4654	9/53	
	18.36.31.442	Jm/Trc	4434	210	4243	9/53	1

Sources:

1: Berkstresser and Mourant, 1966 2: Galloway, 1962

 r^{*}

•

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

APPENDIX B

WATER QUALITY ANALYSES

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

Table B.1: Explanation

a. Type: W = Well S = Surface Water Sp = Spring

- b. Formation: Pll6 = Piezometer 1, 16 ft depth Pl22 = Piezometer 1, 22 ft depth P222 = Piezometer 2, 22 ft depth P240 = Piezometer 2, 40 ft depth P255 = Piezometer 2, 55 ft depth P320 = Piezometer 3, 20 ft depth P335 = Piezometer 3, 35 ft depth P415 = Piezometer 4, 15 ft depth P421 = Piezometer 4, 21 ft depth P621 = Piezometer 6, 21 ft depth P631 = Piezometer 6, 31 ft depth P650 = Piezometer 6, 50 ft depth Rev = Revuelto Creek CaSL = Canadian River at State Line CaTa = Canadian River at Tascosa CaAm = Canadian River at Amarillo CaLM = Lake Meredith Tr = TriassicPSA = San Andres PY = YesoPW = Wolfcampian
- c. Source: 1 = Collected this study
 - 2 = USGS WATSTORE
 - 3 = Water resources data for New Mexico and Texas, various years
 - 4 = Berkstresser and Mourant, 1966
 - 5 = Bureau of Reclamation files
 - 6 = Griggs and Hendrickson, 1951
 - 7 = Bassett and Bentley, 1983

FINAL REPORT

LAKE MEREDITH SALINITY STUDY

1

1

[

1

0

Table B.1: Selected water-quality analyses of Canadian River and groundwater within and near study area

Lotation Types Date Ma F DO3 DO3 DO3 CO DO3 DO3 CO DO3 DO3 <thdo3< th=""> DO3 DO3 <thdo< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thdo<></thdo3<>																																											
Oscillar Type Tack	84	0.44	0.43		0.58	0.10	7	0.78	0.40	7	0.27	0.20	10.0	15.0			1.		7	7	7	7	7	-	-	1	•	7	7	7	7	7.	- 0	9.0	6.0	0.5	1.0	0.7	0.8	0.6	1.0	0.0	
Oscilian Type Tack	Pe	0.0	0.0		0.0	0.0	7	0.0	0.0	7	0.0					>	1		7	7	7	7	7	7	1	1 1	1	7	7	1	7	1	17	1	1	80	7	7	7	7	7	7	
Ometrian Type Date	N03	0.0	0.0		0.0	0.0	4.0	0.0	0.0	4.0	•••		•••						0.8	2.1	1.6	1.8	4.0	8.0				1.3	0.3	1.3	6.9	00		1.4	1.0	2.7	0.2	0.1	3.6	Ţ	7	7	
Oscilar Type Data R. T. B.C. TDS Ca Ms K HO3 OO 33.11.130 7/2/38 91145 5 -1 7.2 2300 1936 543 230 1936 540 0.0 33.11.130 7/2/38 91245 5 -1 7.2 2300 1537 351 143 352 510 1936 560 0.0 0.0 33.11.130 7/2/38 9223 5 -1 7.8 23000 1537 352 131 570 0.0	ទ	6920	6760	0000	6600	8280	7788	6840	10720	13275	5200	5320	3720	0240	00701	0000T	7 C 2 T		25	96	258	15	87	515	<u>c</u> ,	CTT	115	34	48	254	15	21	CO/	÷ -	137	29	350	72	120	1200	006	130	į
Ostilan Typa Data Ra. R. Dial R. PH C. Tis Co. Ms K MO3 O01 3111.110 Y 7/12/18 P125 5 - 1 7.9 224001 12776 311 125 510 11.4 900 0.0 311.110 Y 7/12/18 P125 5 - 1 7.9 224001 1275 311 1125 510 1126 500 0.0 311.1110 Y 7/12/18 P125 5 - 1 7.9 226001 12175 311 1126 500 0.0 311.1110 Y 7/12/18 P125 5 - 1 8.0 1126 311 1126 500 0.0 311.1110 Y 7/12/18 P125 5 - 1 8.0 1116 301 1116 301 1126 311 100 100 1116 1116 1116 1116 1116 111 1116 111 1116 111 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116 1116	80 4	350	830	C76	1045	949	920	1375	1720	1600	960	1200	560	970	C971	0001	1440		222	455	579	76	455	478	195	670 670	209	321	418	598	484	119	519		590	256	504	287	360	550	200	540	
Contion Type* Into Ref Tab Sec	803 03	_	-								-	_	_	_	_	_	_		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	
Contion Type Date Date <thdate< tr=""> 333.11.230</thdate<>	HCO 3	467	634	000	457	362	255	455	580	520	516	565	666	588	555	400 400	843		266	284	314	246	268	458	232	000	278	208	218	312	276	227	474	547	290	234	316	203	188	233	349	145	
Contion Type Date Pa., b. S. T pH S.C. TDS Canadian Pictoners 33:15:130 7/23/83 Plus 5 -1 7.8 2400 17346 331 1236 5 33:14:210 7/23/83 Plus 5 -1 7.8 2400 15746 341 126 5 33:14:210 7/23/83 Plus 5 -1 7.8 2400 15746 341 126 5 33:14:210 7/23/83 Plus 5 -1 7.8 2400 15773 350 130 45 5 33:14:210 7/77/183 Plus 5 -1 17.0 21000 15500 417 7.0 2100 1473 360 130 4 37 7 320 132 4 321 148 37 17 320 132 4 150 170 350 131 17 320 132 4 151 170 120 17 <	ана Мар	21.1	19.6	10.0	19.3	35.2	19.0	23.6	31.0	28.0	15.5	19.9	13.8	28.2	43.2	0.70	0.05		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0			0.0	5.4	0.0	0.0	7.6	7.4	0.0	7.3	20
Contion Type Date Par. b S°T PH B.C. TDS Ca 33.15.130 \$/23/83 F115 5 - 1 7.3 22500 14736 357 1 33.15.130 \$/23/83 F115 5 - 1 7.8 22500 15779 365 1 33.14.210 ¥ \$/23/83 F225 5 - 1 7.8 22500 15779 365 1 33.14.210 ¥ \$/23/83 F255 5 - 1 7.8 24000 16077 352 1 7.2 26000 16077 352 1 7.2 25000 15200 1530 153 13 13 13 13 13 13 13 13 13 13 14 13 <td< th=""><th>RN</th><th>5920</th><th>6160</th><th>0000</th><th>5200</th><th>5370</th><th>.4800</th><th>5920</th><th>8360</th><th>8700</th><th>3536</th><th>4980</th><th>2792</th><th>5260</th><th>7720</th><th>0607</th><th>6900</th><th></th><th>104</th><th>254</th><th>407</th><th>91</th><th>252</th><th>544</th><th>183</th><th>205</th><th>313</th><th>157</th><th>148</th><th>393</th><th>319</th><th>122</th><th></th><th></th><th>305</th><th>135</th><th>421</th><th>170</th><th>171</th><th>910</th><th>830</th><th>260</th><th></th></td<>	RN	5920	6160	0000	5200	5370	.4800	5920	8360	8700	3536	4980	2792	5260	7720	0607	6900		104	254	407	91	252	544	183	205	313	157	148	393	319	122			305	135	421	170	171	910	830	260	
Solution Type ⁴ Date Pa., b S ⁰ T pH B.C. TDS 33.15.130 Y \$/23/83 P116 5 7.9 22500 14736 33.14.210 Y \$/23/83 P122 5 5 1 7.9 22500 15779 33.14.210 Y \$/23/83 P225 5 5 1 7.9 22000 16773 33.14.210 Y \$/23/83 P225 5 5 1 7.0 21000 16773 3 33.14.210 Y 1/07/83 P225 5 5 1 7.0 21000 16773 3 33.11.230 W 1/07/83 P225 5 1 7.0 21000 14773 2 33.11.230 W 1/07/83 P23/83 P315 5 1 7.0 21000 14773 2 33.11.230 W 1/18/83 P321 5 1 7.0 21000 14773 2 33.1.131 W 1/07/83	Mg	128	126	148	164	129	130	172	205	170	148	129	20	149	163	178	145		17	24	4	5.6	28	59	30	17	107	16	31	43	17	4.6	6 4	10	45	18	43	18	33	55	45	27	
Osation Type Date Pm. b S ⁰ T PH S.C. .33.15:130 Y 5/23/83 P116 7.9 225000 .33.15:130 Y 5/23/83 P112 5 1 7.9 225000 .33.15:130 Y 5/23/83 P125 5 1 7.9 225000 .33.114.210 Y 5/23/83 P235 5 1 7.9 24000 .33.114.210 Y 5/23/83 P235 5 1 7.0 21000 1 .33.114.210 Y 7/07/83 P235 5 1 7.0 21000 1 .33.112.230 Y 10/18/83 P235 5 1 7.0 21000 1 .33.112.410 Y 5/23/83 P631 5 1 7.0 21000 1 .34.05:120 Y 7/07/83 P631 5 1 7.0 23000 1 .34.05:120 <	లి	357	341	365	918 352	413	360	237	439	420	303	203	91	255.	456	496	580		74	11	72	30	63	74	76		0/22	. 4 . 6	89	78	32	50	8		2	. 60	75	51	75	91	55	60	83
Ocation Type Date Pm. b S ⁷ 1 Pie .33.15.130 T S/23/83 Pil6 S 1 1.9 .33.15.130 T S/23/83 Pil6 S 1 1.9 .33.15.130 T S/23/83 Pll6 S 1 1.9 .33.14.210 T S/23/83 Pll5 S 1 1.9 .33.114.240 T T T T 1 1.9 .33.112.230 T T T 10 10 10 10	TDS	:s 14736	15246	15779	14530	15500	14273	15564	22947	24714	11145	12644	7573	13521	19135	20600	20783		290	1060	1540	363	1030	1910	889	1360	1300	696	854	1530	1100	416	2150	136 0CCT	1310	632	1560	709	871	2940	2530	1110	
Ocation Type Date Pm. b S ^C T 33.15.130 5/23/83 P116 5 1 .33.15.130 5/23/83 P116 5 1 .33.15.130 5/23/83 P122 5 1 .33.14.210 5/23/83 P122 5 1 1 .33.14.210 5/23/83 P255 5 1 1 .33.14.210 5/23/83 P335 5 1 1 .33.14.210 5/23/83 P335 5 1 1 .33.114.210 5/23/83 P325 5 1 1 1 .33.114.210 5/23/83 P325 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	8.C.	9 Z 0 B 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C	24500	24000	26000	21000	21000	26000	39500	38300	16500	21000	12800	23000	30100	26700	30500		890	1580	2290	565	1540	3110	1340	1990	2050	1060	1240	2330	1660	662	3680	0477	1 920	088	2460	1010	1310	5320	4240	1680	
Ocation Type Date Fm. b S .33.15.130 Type 5/23/83 P116 5 .33.15.130 T/273/83 P122 5	Bq	el Pi 7.9	7.8	80 C	v. v 0	7.6	7.0	8.1	8.2	6.9	7.9	8.0	8.2	7.9	1.1	1.2	• •	-	7.8	2.9	7.8	8.0	7.8	7.7	1.1	N 1		0.8	7.4	8.1	8.1	8.0	01 • 00 •			4		7.6	8.1	7.9	8.4	1.1	
Ocation Type ^a Date Pa. b 33.15.130 Type ^a Date Pa. b 33.15.130 Total and the stress S/23/83 P116 33.15.130 Total and stress S/23/83 P122 33.14.210 Total and stress S/23/83 P255 33.11.2230 Total and stress S/23/83 P415 33.11.2230 Total and stress S/23/83 P650 34.05.120		Chann 5 -1			7 7 0 4		4 17	5 -1	5 -1	4 18	5 -1	5 -1	5 -1	s -1	5 -1	5 -1	4 18		1	1		1	3 -1	- - -	- - -		- - - - -	1 1	- - -	3 1- 1-	3 -1	П		- - -	1 1 0 0	17	17	1	1	1	9 - 1-	3 -1	×
	م	River P116	P122	P222	P240	P255	P255	P320	P335	P335	P415	P421	P621	P631	P650	P650	P650	1000			Rev	Rev	Rev	Rev	Rev	Rev	Nev Dev	Rev	Rev	Rov	Rev	Rev	Rev	Aox	Nev Nev			-		Rev	Rev	Rev	
0.3 .15 .130 U .33 .14 .210 U .33 .12 .230 U .33 .21 .13 S		Canadian 5/23/83	5/23/83	5/23/83	5/23/83	7/07/83	0/18/83	5/23/83	5/23/83	10/18/83	5/23/83	5/23/83	5/23/83	5/23/83	5/23/83	7/07/83	10/18/83	2 C	10/ 1/20				10/26/60	4/23/61	10/26/61	6/12/62	11/ 8/62	71 7/63	10/ 1/63		11/18/64	6/26/65	1/10/66	10/ 7/ 00	1/20/01	\$/10/68	2/ 2/68	9/ 8/69		8/13/71	3/ 7/72		200
	ype ⁸		-			- 30				-		-		-		-	-	F		•	. 02	0	•••		••	, 100 (8	-	-	n a	0 0	2 00	. 02	. 03	03	00	80	
	1	130	.130	.210	210	.210	.240	.230	.230	.230	.410	.410	.120	.120	.120	.120	.120		13	13	13	13	.13	.13	.13	.13	.13 1	13	13	.13	.13	.13	.13			:-	1 7	: -	: -		1	.13	12
	atio	3.15	3.15	3.14	3.14	3.14		3.12	3.12	3.12	3.12	3.12	4.05	4.05	4.05	4.05	4.05		5	3.21	21	21	3.21	21	31	21	5	21	21	51	21	5	33	52	12	15	15	15	12	3.21	3.21	3.21	
	Loc	1 2	13.3	13.3	ຕຸ ຕ	3 "	. "	13.3	13.3	13.3	13.3	13 .3.	13.3	13.3	13 .3	.	ື		0 7		13.3	13 .3	13.3	13.3	13.3	13.3	E 13	13.3	13.3	13 .3	13.3	13.3	13 .3	13.5	12 C		19.5	13 .3	13.3	ຸຕ		3	(45.22)

FINAL REPORT

LAKE MEREDITH SALINITY STUDY

Table B.1: Continued

				1																																										
-	0.8	0.6	0.7	1.0	n 0			20	0	9.0	0.7		•	0.7	0.6	8.0	0.5	6 .0	1.2	0.5	0.6	0.7			0.6	0.5	0.6	0.0	0.7	0.6	0	0	0.7	0.7	0.0	1.0	9.0		0.0	0	6°0	n \ 0 (•			
- Pe	7	7	7	7	7	7	7 '	7'	T.	7'	7	7	7	7	7	20	15	60	10	1	10	9			7	7	7	7	7	7	9	ī	rt '	1	ï	7'	7	1	7	i i	7	7	1	1	1	4
NO3	T	7	7	0.0	0				1.2	1.0	10.0	3.0	49.0	0.61	7	7	7	7	7	7	7	7			7	40	9	0.0	.	7	.20	7	7	ï	7	1.80	÷.	.15	1		.35	7'	7	4		^ ·
 IJ	210	47	580	150	64	066	23	1200	67	1400	1200	1400	12	270	83	950	290	1100	1500	55	180	70			102	1380	2370	1750	188	2000	2100	3800	21	1800	2100	670	2300	720	1300	2300	130	2500	210	2700	230	AVC L
80 4	840	460	540	490	330	400	130	250	130	260	290	320	12	450	420	360	410	340	510	240	660	320			108	408	445	546	170	400	780	600	100	460	450	300	480	320	410	450	46	390	140	440	130	240
83	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.11	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.2
HC03			282								_						_								166	260	308	256	170	326	278	385	159	327	260	195	378	268	294	307	130	314	198	318	200	717
-	4.1	0.9		6.3	9	9	6.1	m	6 1	2 .1	9	4	2.8	3.7	5.1	4.2	4.1	4.6	0.8	•		5.0				_	_	-	_	_	_	_		_		_	_	-		_	-	_	-	0,1		_
Na	430	180	590	270	210	830	140	870	200	0001	930	1100	73	360	250	740	360	860	1100	160	360	190			124	949	1550	1230	210	1300	1500	2400	110	1300	1400	500	1600	580	940	1600	110	1700	240	1800	240	700
Mg	60	31	48	23	16	41	3.0	34	1.0	4	40	20	1.0	32	32	44	30	39	8	15	48	21		9	12	56	75	11	11	60	100	12	ŝ	09	16	28	75	31	46	8	9	16	4	8°,	n t	TQ
Ca	74	68	65	63	29	64	9	49	ŝ	56	65	59	ო	57	58	63	60	55	65	41	63	46	2	ate Lir	30	110	138	116	26	120	120	150	18	130	110	57	140	62	100	130	17	140	12	140	15	y
rds	760	914	1980	120	768	500	419	620	555	980	720	170	232	330	993	360	300	610	520	634	190	1	1	exas St	474	110	760	880	713	066	980	006	372	080	720	710	740	760	980	460	369	190	696	5540	705	710
Г . .Э.		_	-	_	_	-		-	_	_	-	-		_	_	-	-	-	-					I						_	_	_		_	_	_	_	_		_	9	_		_	_	
20	25	13	3320	17	12	4	Ö	4	-	ě	4 8	55	ă	20	15	39	20	4	56	10	52	12	i	Max1.	00	ō	88	99	11	60	81	1 25	ف	67	15	30	16	30	52	8 0	ف	82	12	10000	13	ñ
Hq	8.2	1.1	8.1	8.1	-1.0	8.2	8.4	8.1	8.9	8.6	8	80 41	80	9.4	8.4	8.6	8.4	8.6	8.1	0				ve Nev	7 . 8	8	7.9	8.0	7.8	7.8	8.6	8.1	8.3	7.8	8.0	80 7	8	8.1	8.4	80	8.0	* •	00	80	- C	2.2
T %	1	1	1	7	7	7	7	7	7	7	7	7	7	7	7	7	1	7	1	1	17	1	4	a bo	1	1	7	7	7	1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7'	1
٩. ٩				Þ	A	Þ	A	Þ	Þ	Þ	Þ	×	Þ	Þ	A	Þ	Þ	A						VOT	CASL	SL	SL	SL	SL	SL	SL	SL	SL	SL	SL	SL	SL	ISL :	SL.	SL	SL	SL	SL	CaSL		
4	-		4 Rev																					Ř																						
.Da te	/ 5/7	8/14/73	1 7/74	9/10/74	4/14/75	1/12/75	<i>6/ 9/76</i>	1/12/77	6/22/77	2/ 1/78	12/19/78	4/10/79	8/16/79	2/21/80	11/20/80	2/19/81	11/19/81	2/25/82	5/19/82	8/12/82	u/ 12/ 02 4/13/83	8/10/83		Canadian	9/25/69	10/21/69	2/24/70	5/12/70	7/15/70	1/11/1	4/13/71	6/14/71	8/ 9/71	2/13/71	4/13/72	7/11/72	12/11/72		11/ 8/74	3/24/75	6/24/75	2/ 9/75	6/ 9/76	2/15/76	4/20/77	1.182/6
80			•••			-						-											-	2										-			•••	*				-		S 113		
Type ^a	60 60				6) 63		~) 95) 67						90	. 93	. 93	- 90		. 93	93	43	44	43	43	93	43	93	43	44	43	43	49	-	9 4 (rd
 Location	13.33.21.1	13.33.21.13	13.33.21.13		13.33.21.13		13.33.21.1	19.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13	13.33.21.13				11 12 22 11 12	, a , a			13.13.37	.13.3	3	.13	13	13	13.13.37	13.13.37	13.13.37	13.13.37	.13.3	13.13.37	13.13.37	13.13.37	13.13.37	13.13.37	.13.3	.13.3	.13.3	.13		13.13.37

 \Box

 \square

LAKE MEREDITE SALINITY STUDY

[

[

1

0

0

[

[

0

0

HYDRO GEO CHEM, INC

l: Continued	pend					
Type		Ч. Ш.	S° T	BH	· 8.C.	SQL
20	2/ 1/78 CaSL 3 -1	CaSL	3 -1	8.9	9200	5410
00	5/24/78 CaSL 3	CaSL	3 -1	8.1	6490	3590
•	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.07	1	4	1100	1210

	78 CaSL 3 - 778 CaSL 3 - 78 CaSL 3 - 78 CaSL 3 - 78 CaSL 3 - 79 CaSL 3 - 61 Ca		9200 6490 1200 0500 1800	5410	150	0							1		
		੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶੶ 	6490 2100 1200 0500 1800			0	1900	11.0	320	1.0	440	2900	.38	7	0.6
		੶੶੶੶੶੶ 	2100 1200 0500 1800	3590	110	11	1200	10.0	T	0.0	350	1800	.02	7	0.0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		┶ <u>ਜ਼</u> 	1200 0500 1800	1310	54	16	430	4.7	200	0.0	83	550	-51	7"	0
888 888 888 888 888 888 888 888 888 88			0500 1800	720	22	9	200	4.1	83	0.0	58	290	.13	7	2
			1800	5630	140	79	1900	13.0	660	0.0	480	2900	9	7	0.0
88888888888888888888888888888888888888		ᆆᆆᆆᆆᆆᆆ ᢁᢁᢁᢁᢁᢁᢁ。		1030	40.	10	330	4.3	140	0.0	170	380	9	7	0.0
88888888888888888888888888888888888888			6750	4060	66	68	1300	11.0	530	0.0	410	2000	5	7	0.5
88888888888888888888888888888888888888			1180	734	36	21	. 200	6.2	180	0.0	140	190	.13	7	7
			5813	7	110	54	1100	11.0	500	0.0	7	7	.18	7	7
3 1/1 3 1/1 3 1/1 3 1/1 3 /0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5			9380	5320	140	77	1700	7.5	670	0.0	44	2700	-51	7	0.1
			3000	7	51	23	490	5.0	220	0.0	230	650	.13	ŧ	•
17 1 28 12/1 8 12/1 8 21/1 8 3/1 9/1			980	559	30	14	170	5.0	130	0.0	110	150	.26	12	0.8
2 Canada			0006	5410	130	85	1700	0.0	670	0.0	93	2800	7	q	0.6
7 88 Can		-1 8.1	1000	638	36	14	150	4.2	150	0.0	110	150	7	7	0.5
Cam 8 1/		-1 8.4	3700	2130	78	40	620	5.5	7	7	330	840	7	06	0.6
Can 3 / 1/ 3 /		T	- E										8		
3/	÷ .		, LUXAN	3040	00	64	926	6.9	264	0	512	1280	3.7	7	7
10 0			0012		2	44	040	7	198	0	419	1300	2.6	7	7
			177 641	386	32	12	16	7	179	•	95	56	2.4	7	0.5
0 0		0 2 9	915	549	28	11	160	7	228	•	122	104	0.6	7	0.5
9 0		1 7.6	3900	2370	8	60	690	T	208	•	524	890	0.0	7	0.6
2 02		1.7 14	1570	934	49	17	271	7	208	•	192	290	4.0	7	
	-	7 8.0	1710	979	39	18	300	7	199	•	190	320	1.1	7	0.0
0		2 7.8	6520	3780	96	70	1200	7	180	•	520	1800	0.0	7	7
1 02		25 8.1	455	276	21	6.8	68	3.1	145	•	46	41	2.0	7	••
00	CaTa 3		2150	1270	59	34	360	7	302	7	280	380	0.7	7	"
3 1/L	CaTa 3	23 8.1	662	384	26	8.4	100	7	180	0	67	12	1.5	7	
S 10/	CaTa 3		1110	655	42	16	170	4.1	210	•	170	140	7''	7	
S 12/	CaTa 3		2600	1410	56	42	400	7	230	0 0	260	026	7 1	77	
0730000 8 6/13/73	CaTa 3		951	1620	51	58	240	7	148	2	200	0.07	1		
2	CaTa 3		3610	2130	28	23	620	1.1	220	7 9	044	067	1 1	1 1	1 1
8 1/	CaTa 3		3640	2110	20	4	0.00	n t 0 \	707	•			1	1	1
Ø	CaTa 3		1010	583	56	50	120		977	1.	07 T	DCT -	1 T	1 1	1
8/	CaTa 3		698	387	22	11		•	847 7 4 4	1	10		1	1	1
10/	CaTa 3		3260	1890	12	80 I 10	200	01	A 27	1			1	1	
	CaTa 3		3510	2090	2 2	57	020		477	• •			1 1	1	
Ø	CaTa 3		1480	826	5	9	007		000			1000	1 1	1	1.ve 0
00	CaTa 3		4120	0407		0 7			214	• •		58	' 7	1	0
89 1	Calla 3		171	676		9 2	891		151	• •	5	66	7	7	0.5
	Cala J		2610	1500	n Q	31	420	5.6	244	- 00	260	560	7	7	0.5
0/30000 S TU/ 6/ /8			0107	0110	50		740	7.4	2.84	00	460	950	7	7	9.0

FINAL REPORT

LAKB MEREDITH SALINITY STUDY

ъ.
•
2
-
5
ല്
-
-
-
8
_
•
-
H

							•			•	224	Ş	50	ξ	NIN.	6	6
Location Type ⁸	a Date	р. Д	S° T	đ	8.C.	TDS	e C	9 M	e N	4	EW3	B	the	3	En	0	.]
	Canadian	n Rive	T DOAL	r Amaril	110										4		
93	10/19/48	8 CaAm	13-1	7	2550	1740	150	63	339	7	338	0.0	525	380	15.0	7'	7
63		9 CaAm	1 3 -1	7	2190	1410	102	45	322	7	223	0.0	449	345	6 .7	1	11
99	10/ 2/50	0 CaA	13-1	2.2	712	434	34	13	2	7''	201		~	5		1.1	1
8	7/13/51	1 CaA		1	2860	1820	178	, i	2 C Z F	1 1	674		170	120		17	
80 0	9/25/51	L CaA	1 1 1		1 670	1150		1 8 6	292	17	224	0.0	370	258		1	80
8 0	2/2C/2			• r	1300	827	64	44	135	1	341	0.0	109	118	82.0	7	3.6
0 00	8/ 5/52 8/ 5/52		1 -	1.1	1150	648	49	25	139	7	203	0.0	162		1.0	7	2.0
3 03	11/ 5/52	2 CaAs	3	8.2	1310	957	62	43	162	7	315	0.0	129		112.0	1	+
1 00	4/10/53	3 CaAs	3-1-	1.5	1490	944	10	48	171	7	317	0.0	150		111.0	7	5.2
1 69	8/ 7/53	3 CaAm	3 -1	8.0	700	438	30	10	106	7	196	0.0	77		3.0	7	1.0
03	12/15/53	3 CaA	13-1	8.2	2190	1400	121	55	277	7	289	0.0	326		75.0	7	7.
. 03	6/25/54	4 CaAm	13 -1	7.5	1200	792	62	45	125	7	363	0.0	109		26.0	7	4.0
- 50	9/30/54	4 CaAm	1 3 -1	8.0	2560	1550	8	38	424	7	283	0.0	314	525	'n	7	1.2
. 65	2/ 5/5	-	3 -1	4. 1	2590	1720	138	57	371	7	346	0.0	402	440	69.0	7	2.8
1 93	8/ 9/55	5 Ca Am	- 1- - 1-	7.8	601	354	37	11	74	7	174	0.0	64	60	1.2	7	1.2
1 05	1/23/56		11	7.5	2360	1560	132	50	329	7	299	0.0	370	390	75.0	7	3.6
90	6/23/56	-	- 1- 1-	8.1	1950	1210	97	38	275	7	275	0.0	314	308	6.0	7	1.6
	1/20/55	-	3 -1	8.0	1240	835	67	36	147	7	297	0.0	127	132	78.0	7	•
. 00	3/28/57	_	3 -1	7.2	1820	1100	97	37	235	T	280	0.0	260	270	21.0	7	2.8
. 23	8/ 5/57	-	3 -1	7.8	448	293	20	1	70	7	162	0.0	46	32	2.5	7	1.4
. 62	1/ 5/5		3 -1	7.6	2440	1550	138	46	334	7	260	0.0	392	420	53.0	7	1.6
03	4/25/58		3 -1	7.4	1970	1240	89	31	303	7	258	0.0	313	312	34.0	7	1.2
8	9/26/58		1 - 1	7.5	1570	981	11	24	232	7	222	0.0	218	252	15.0	7	1.0
80	2/ 7/5		13-1	7.4	2660	1640	118	44	397	7	262	0.0	399	478	39.0	7	4 I
23	7/ 3/57		1 3 -1	7.2	925	579	40	14	147	7	182	0.0	138	128	ς. Γ	ī	-
03	12/17/59		1 3 -1	7.5	642	409	27	90	108	7	179	0.0	82	11	4.0	7	'n
3	7/ 2/60		1 3 -1	7.8	1370	849	57	19	216	7	221	0.0	205	202	8.2	7	9
63	11/25/60	0 CaAm	3 -1	1.4	2490	1540	101	39	395	7	302	0.0	382	4 4 2 2 2	0.0	7 '	0.1
3	5/31/61	-	1 3 -1	6.9	2080	1260	S :	4	287	7 '	222		804	242		7 .	
90	10/ 1/61	-	- 1 - 1	1.0	1500	1000	3	31	201	7	212		505	1 20	0.82	-t •	
8	1/26/62		- 3 - 1	6.9	1890	1390	80	55	002	7'	240		1 07	0.027		17	
03	6/ 6/62		11 0	9.9	1630	1010	74	30	228	ï	7.04		077	017	0.14		•••
8	2/14/63			9.9	2370	1460	011	9 ;	146	7 '	207						
8	6/20/63			6.6	932	548	43	2	132	1			611	171		4 +	
80	1/ 7/64		1 3 -1	4.1	1290	768	74	32	131	7	297	0.0	140	140	18.0	7	
93	7/15/64		a 3 -1	8.2	1150	724	51	35	130	18.0	326	0.0	16	108	62.0	7'	2.2
50	11/11/64	_	a 3 -1	4.7	1720	1090	93	38	231	7	252	0.0	228	265	0.09	7'	2.0
8	3/23/65		n 3 -1	1.7	1430	931	73	39	132	7	284	0.0	192	180	0 1 8	1	
80	8/ 2/65		a 3 -1	7.3	3770	2290	171	60	556	7	194	0.0	624	760	n (7
8	12/15/65	5 CaAn	3 -1	7.4	2960	1780	123	49	429	4.1	236	0.0	432	570	20.0	7'	
8	6/25/66	6 CaAn	a 3 -1	8.1	1150	676	54	29	132	13.0	237	0.0	127	138	26.0	7	1.0
83	1/15/67	7 CaAs	a 3 –1	7.6	2570	1580	116	46	365	11.0	219	0.0	368	470	46.0	7	
3	8/ 9/67	7 CaAs	a 3 –1	8.1	2840	2150	66	36	441		180	0,0	286	562	0,1	ī	0
C	0/10/1	1)						1,,	•	•	

- Antonia

1

0

 $\left[\right]$

LAKE MEREDITH SALINITY STUDY

ſ

[

 $\left[\right]$

 $\left[\right]$

[]

[

HYDRO GEO CHEM, INC

																																				~**													
	-	7	"	9	10 V		1.2	.		9	1.5	7	7	00	1.1	'n	-		ľ		•	•	s.		• •	9		ŗ.			9			4 6														0	
	P.	7	7	7'	7	7	7	7	7	7	7	7	7	7	7	7	7	1	1		1	7	7	7	7	7	1	7	7		ī	4 -	- 1 -	1	1	1		1				-4 + 1	1	17		77	-t •	1	
	EON	10.0	47.0	0	4.5	с. С. С.	4.8	3.5	3.1	1.5	2.0	ं 7	7	s.	ī	5	9	1	27			50 .	7	.15	0.0	.31	.22	7	7		ī	i 1	1		1	• •	1				1 1	1	1	1 1	4 .	1 1	1	1	
	5	540	650	235	365	600	720	610	300	670	190	290	480	730	140	100	860	130	1 400		000	1000	1300	850	330	960	120	900	240		000	010	017	7 4 4	404	4 C C	107		***		007	0.02	0/7			0.97	007	200	
	804	421	428	205	272	380	200	380	260	450	180	270	290	450	110	80	200	110		001	400	680	1100	570	200	430	80	600	150		505		+07	077	910				170	047	647	240	200			0/2	0.02	250	
	83	26.0	0.0	0.0	0.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0					0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0													.					.	0.0	
	HC03	142	226	176	202	218	216	252	228	274	288	207	226	264	154	111	252	120			100	190	170	230	160	190	120	200	150		200	007	b 77				171	717	+07	107	717	214	208	707	+77	210	198.	200	
	м	1	7	7	7	8.2	7	7	7.8	7	7	15.0	6.3	11.0	15.0	1	1			-	8.1	7.0	6.1	4.1	8.3	10.0	6.1	6.4	5.2												0	0	•			- - -	-1-0	-1.0	
	N.	418	519	215	297	480	600	480	270	530	180	260	004	550	130	140	440	1 40			420	720	006	570	250	630	110	620	220		100	+07	7 9 9	077	7 0 7 0	0 4 0	077	107	0.67	1.67	244	240	260	0/7	OTC OTC	270	270	250	
	Mg	40	48	21	29	4	49	42	26	49	32	32	33	49	16	e en) a	0 8	2	42	63	80	58	23	48	13	58	17		Ċ	77	12	9	7 0 7 C	9 c	25	6 Y C	5	5	47	24	24	2		26	22	23	
	5	118	128	57	88	93	110	110	78	120	72	76	84	110	5	; [3 F	17	200	120	200	290	190	74	140	33	170	47			23	4	2		2 8		2	2	2:	61	63	8	10	70	63	57	54	
-	2		5000																													7 0	77	4	0.0			17	712	30	54	43	14	01	50	1020	8	42	
	TDS				-											•	•				-			•••					_			20 G											ł						
	8.C.	2700	3230	1410	1970	2890	4320	2980	1800	3210	1390	1820	2540	3430	0.7					0230	2850	4400	6110	3900	1700	3900	750	4060	1100		•	Γ`	1	7`		ï	ī	ī `	7 '	Τ`	T `	T	T	Γ.	7 `	7	T	7	
	Hq	8.8	7.3	7.8	7.2	7.8	8	7.8	8.2	7.4	8.0	8.3	8.1	8.0		- 0			7 1	4 · L	67 00	8.3	7	8.0	8.5	8.1	7.9	8.3	8.3		•	7	7'	7	1	1	7''	7'	7	1	7	7	7	7 '	7'	7	7	7	
	S ^c T	3-1-	3 - 1	3 -1	3 -1	9 17 9	3 -1	3	3 -1	11	11	1	1	1	1 7 1 1	1 - 1 -	1 T	-1 - -	- - -	- -	1	3-1	3 17 17	3 -1	- - -	11	3 -1	3 -1	3 -1		•	4 ·					4 ·	4 ·	4	4 ·		4	7 7				4	4	
	Fa. b	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	Ca Am	- W						CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	CaAm	Caam	CaAm		odith 2 - 2		CallW	Callin					CaLM	CallW	CaLM	CaLN	CaLM	CallW	CaLM	CaLM	CaLN	CaLM	
pe	Date	/ 8/68	2/15/69			10/15/70		12/15/71	7/10/72													12/20/78	3/29/79	12/20/79	6/26/80		8/19/81				Lake Neredi			12/ 0/07	8/ 23/ 68	4/ 11/ 6A	30/69	6/70	8/ 5/70	8/26/70	21/70	4/70						10/ 5/72	
Cont inued	Types	8 9			8	•••				-	•					-										-				1	-			-		1	•••									8		••	9) 3)
		-	_	~	i e	~	_	_	~	_	_								_	-	-	~	~	_		_	~	-	-			2	2	2	2	2	2	2	õ	<u>o</u>	õ	2	2		<u>S</u>	õ	2	2	
Table B.1:	Location	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0006690	00000000		0005500	0033000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000	0633000			07227900	07227900	01227900	07227900	006/27/0	07227900	07227900	07227900	07227900	07227900	07227900	07227900	07227900	07227900	07227900	07227900	07227900	

LAKE MEREDITE SALINITY STUDY

Table B.1: Continued

.

HYDRO GEO CHEM, INC

B	8.0	0	0		0 7		0.7-	9 0	6. 0	8.0	0	0				2.0	8.0	8.0	8.0	0.7		е •	• •	9 9	7	0.7	7	1.9	6.0	7	7	7 '	7	-	7 1	7 7	7,	•••	1	1.6		0.9	ся 1	4.0
Fe.	7	7	7	7	1	7	7	7	7	7	17	17	1		1	7	7	1	7	7		1	ł	1	T	•	Ţ	7	7	7	7	1	73	5	7'	7 .	7,	₽•1 1	int i	1	7	7	7	7
NO3	7	7	7	7	7	7	7	7	7	1	1	17	•	4 4	i, i	7	7	T/	7	7		9		11.0	1.2		6.5		2.9	16.0	2.9	-	2°. 1	7	.		+ \ D (9.0 M	1	7	7	9.7	17.0	17.0
5	250	270	260	280	290	290	310	300	310	000	210	076			330	330	310	350	390	270			*	143	23	187	26	3 2	510	116	300	31	238		23	42.5	255	51	59	60	3.8	72	80	26
S04	250	250	260	280	280	270	280	300	290			7 00 6		010	017	280	280	300	300	210		001	120	581	267	184	125	494	1100	249	1760	555	968	215	9	000	548	170	7	140	56	180	303	60
8 3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0			> <				0.0	0.0	0.0	0.0	0.0																						•		
BC03	206	212	214	212	218	217	208	202	219	100	9 T T C	112	204	202	206	210	190	190	180	160			388	257	636	460	372	504	824	572	824	80	852	496	229	355	161	314	220	220	320	612	445	338
M	-1.0	6.1	6.1	6.6	8.1	6.6	8.1	6.9	1.0		- 1	7.7		2.1	8.2	00 00	8.0	7.8	6.6	5.8		,	7	7	7	7	7	7	7	7	7	7	7	7	3.5	4.9	1.1	7	7	3.2	7	7	1	7
Na	250	240	250	260	280	280	280	.280	000			290	300	300	300	300	290	330	350	250			212	227	431	424	136	518	1200	307	1370	304	970	239	23	49	205	54	7	59	7	265	279	49
R6	23	26	26	27	27	28	58	29	30	2 0	00	5 6	Of	30	30	31	27	28	33	21	l		8.7	59	3.7	0.0	29	2.4	6.3	43	4.5	54	5.0	38	21	85	190	32	31	35	31	34	31	34
C	56	61	62	59	64	63	55	99			20	28	61	58	59	63	44	49	57	46	2		16	117	6	3.6	25	m	13	29	9.5	82	ŝ	45	61	210	140	109	69	65	56	33	30	58
TDS	942	960	972	1030	1060	1050	1070	1080	1100	0011	1040	1090	1150	1150	1120	1100	1060	1160	1250	906			631	1270	1120	1100	531	1410	3310	1050	3900	1070	2670	908	456	1375	2122	404	7	511	363	912	973	411
8.C.	7	1	17	17	7	17	'7	17		7	7	7	7	7	7	7	1840	1910	2140	1530			1000	1820	1760	1810	871	2130	4890	1680	5520	1270	3970	1440	570	1610	2800	932	814	843	517	1400	1510	7110
ЪĦ	T	' 7	' 7	' 7	1	'7	17	17	4 4	7	7	7	7	7	7	7	7	7	1	' 7	•		8.2	7	ī	6.9	1	1	• 7	' 7	'7	7	7	7.6	7.5	7.0	6.9	4.1	9.1	7.8	1.5	7	1	7
S ^c T	1-1	17	1 -	17	1	1 -		• •		1	7	4	77	77	4 -1	1	9		-		•		1 17	1	1	17	' Ti	17	17	• -	· 7		1		4 19.4	4 18.0	4 18.0	1 17.0	2 16.0	2 14.0	2 18.0	-1- 9		6 -1
P. P.	1 5			י כ			2 6	2	יכ	0	0	CaLM	0	0	0		9					Volls.	•			-						÷.,	-	-										1
Date	0/15/73	CI 107 17	CI 10 10	0/ 14/ 13 10/ 18/ 72	21 107 10 7 1 1 1 1 1			-/ /0T //	CI. 177.1T	5/28/75	9/ 9/75	1/21/76	5/ 5/76	8/24/76	1/14/77	1/ 5/78	12/29/78	2/ 4/80	2/13/81	10/00/01	TO 167 17	Triassic	12/10/52	7/30/48	10/ 2/48			U/ 11/ 40 7/ 15/ 48	01/77/10 1/14/48	0/ 174 /1	2/2//2/48	10/13/48	0/13/48	12/08/58	9/21/83	9/22/83	9/22/83	2/25/55	3/26/63	3/26/63	4/10/70	10/15/47	10/15/47	10/15/47
Type	0	3 0					00			00		8					-	•				F		1 :)=	-	- 1	•	•	-	- 1				:)==	S		-	- 10	- 🍽		- 10	-		-)=-
Location 1	01077000	00612210	00020000	006/77/0	00617710	00202000	00612210	006/77/0	01221900	07227900	07227900	07227900	07227900	07227900	07777000	010727000	01007000	012212000	00017710	000107710	00617710		10 28 15 143	10 21 12 333	10 00 11 00 01	CTC / 1 7 7 01		11.30. 3.341	74°7 °76°77	CTT. 41.1C.11	CAL CI. 16. 11	11.31.22.122	11.31.23.330	11.37.17.321	13.32.01.000	13.33.01.000	13.33.24.000	13.33.11.322	ACA 70 76 41	TT. 32.20.11	14 21 2 477	14.26.01.140	041.10.02.01	17.27.10.100

1

4

LAKR MEREDITH SALINITY STUDY

0

L

1

1

 $\left[\right]$

D

1

[

[

Table B.1: Continued

:

HYDRO GEO CHEM, INC

	P4		4.0	0.3	0.3	0.2	0.2	0.5	1.5	0.0	8.0		7		7	0.7	7		7		0.6	0.5		7	7	7	7	
	e H		7	7	7	7	7	7	7	Ţ	7		7		T	0.47	7		0.83		1.34	0.19		7	7	7	٦	
	EON		17.0	0.2	0.3	0.3	42.0	4.2	0.1	0.7	0.0		7		4.0	7	4.0	•	Ţ		2.8	7		7	7	7	7	
	ប		9	4	ŝ	6	11	9	35	3.5	ŝ		2270		43719	26800	27435		19700		5760	6580		88154	71600	104000	85566	
	804		19	1610	130	1130	26	102	113	34	37		1840		2250	2810	2880		2660		1450	1710				1600 1		
	03 03		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		7		0		0.0		0.0			0				0.0		
	BC03		302	152	331	186	294	218	469	185	330		994		904	887	159		830		1280	1076		302	278	173	106	
	м		7	7	7	٦	7	7	7	7	7		7		64	62.9	75.0		51.7		54.8	36.8		7	7	7	7	
	N		14	18	60	43	18	. 24	247	3.9	76		1510		29000	19640	17500		17940		4240	7880		60310	10900	56200	47193	
	Mg		22	135	28 2	91	12	32	3.4	4 .8	12		102		610	245	220		182		102	96		1069	1350	1540	841	
	లి		68	486	67	351	92	46	6	60	42		890		1360	792	800		624		449	384		1100	3660	7960	6578	
	TDS		295	2350	475	1720	374	322	645	202	334		7100		80948	49180	49072		36406		11985	21138		64026	20000	172000	42121	
	s.c.		511	2550	723	1990	575	533	1040	358	539		10000		70650	20000	69000		49600			17800		-1 -1	1 7		- -	
	Βđ		7	7	7	7	7	7	7	7	7		7		- 9		•••		- 		7	7		6.8	7.9	6.8	8.8	
	S° T	ıty	6 -1	6 -1	6 -1	6 - <u>1</u>	6 -1	6 -1	6 - <u>1</u>	6 -1	6 -1		1-1		4 22.8	5 18.5	4 19.0		5 17.5		5 -1	: 5 18.0	OX85	7 45.6	7 46.2	7 47.8	7 47.3	
	P. a.	Vells County	Psa	Py	Py	Py	Å	Py	Py	E C	Pm		4		M/P	P/Tr	P/Tr		P/Tr		P/Tr	P/Tr	i n	M	M	M	M	
leđ	Date	Permian San Migue]	9/26/47					10/22/47		7/24/47	6/20/47	11	12/11/51	Vol1	9/22/83	7/19/83	10/17/83		7/19/83		5/06/83	7/19/83	aquifer	00/00/0	00/00/0	00/00/0	00/00/0	
ont 1n	Types	in Se	-			1	-	W 10	-	-		-					-					-	fcamp	-			-	
ວ :-	E E	11.	1.110	1.110	1.200	5.100	1110	5.200	1.100	5.300	7.100	1 Hoor	0.232	Spr.	5.120 -3	1.130	5.130	4	5.130	Ņ	7.230	1.230	I Woli					
Table B.1: Continued	Location	Water vells in	11.15.21.110	12.12.04.110	12.12.11	12.12.36.100	12.14.22.110	13.12.26.200	15.12.33.100	16.12.16.300	18.15.27.100	Ray No 1 Hoover	11.28.30.232	Dripping Springs	13.31.25.120 W Well OW-3	13.33.15.130	13.33.15.130 W	Well 0W-4	13.33.15.130 W	Well DH-2	13.34.07.230	13.34.07.230	Wells in Wolfcamp aquifer	0258000	0635000	0643000	0651000	

FINAL REPORT

Sample	Distance from Ute Dam (miles)	Date	TDS mg/1	C1 mg/1	Br mg/1
1	0.2	10-20-83	1350	570	0.56
	0.5	10	2580	1080	
2 3	0.8	88	3850	1720	0.59
4	1.1	11	4130	2150	
5	1.5	**	5050	2550	0.69
б.,	1.9	10-19-83	6450	3250	
7	2.2	**	6150	3300	0.60
8	2.4	10-20-83	53 80	2760	
.9	2.6	10-19-83	6730	3370	0.71
10	2.9	10-20-83	5550	2880	
11	3.0	10-19-83	7250	3654	
12	3.2	10-20-83	6000	3110	0.37
13	3.5	10-19-83	7650	3860	
14	3.7	10-20-83	8230	4280	
15	3.9	10-19-83	9030	4660	0.50
16	4.0	10-20-83	9150	4760	
17	4.3	10-19-83	93 50	4860	
18	4.6	10-20-83	93 50	4900	0.60
19	4.9	**	9750	5105	
20	5.3	"	10400	5500	0.67
21	5.6		10600	5560	
22	5.9	10-19-83	11400	5910	
23	5.95	10-20-83	10700	5620	0.52

Table B.2: Results of water quality determinations, Canadian River water between Ute Dam and Revuelto Creek, Oct. 19 and 20, 1983

Sample	Distance from Ute Dam (miles)	Temp (°C)	Sp.Cond. µmhos(25°)		TDS mg/1	C1 mg/1	Br mg/1
1	0.0	14.0	1950		1230	330	0.39
2	0.13	10.0	3557				
3	0.26	8.3	3979				
4	0.37	5.0		-	seep or	n N. ċan	yon wall
5 6	0.48	4.0	4466				
	0.60	13.6	10492		2420	900	0.49
7	0.66	16.5			brine j		
8	0.72	13.0		-	river l	pends to	SE
9	0.86	12.8	21160				
10	0.92	6.9	9560				
11	0.95	6.9	9560				
12	1.08	4.9	8696	-	river 1	oends to	NE
13	1.17	3.0	10180				
14	1.20	3.0	11070				
15	1.26	2.2	11213				
16	1.37	2.7	10650				
17	1.44	2.2	11210		5740	3060	0.73
18	1.51	3.0	10710		at piez	z site 1	
19	1.61	3.0	10710				
20	1.69	3.2	10280				
21	1.90	3.0	10710		at USGS	S gaging	statio
22	1.97	3.0	10180	-	at Hwy	54 brid	ge
23	2.01	3.2	10280				
24	2.13	3.1		-	river 1	oends to	SSW
25	2.42	3.0	9460		6110	6020	0.75
26	2.57	3.2	10990				
27	2.65	3.3		_	river 1	bends to	E
28	2.71	3.5	11230				
29	2.76	3.0	10890				
30	2.99	1.2	12980				
31	3.10	1.6	13160				
32	3.12	1.2	14120	_	at RR 1	bridge	
33	3.24	3.0	12860				
34	3.36	2.7	14080				
35	3.51	2.5	16000		8740	4600	1.01
36	3.63	1.8	15860				
37	3.81	2.9	15050				
38	3.92	2.9	16130				
39	4.01	3.9	15220				
40	4.07	1.1	15520	_	river 1	bends to	N
41	4.10	1.0	15960				~ *

Table B.3: Results of water quality determinations, Canadian River water between Ute Dam and Dunes damsite, Jan 4 and 5, 1984

LAKE MEREDITH SALINITY INVESTIGATION

Table	B.3:	Continued
-------	------	-----------

Sample	Distance from Ute Dam (miles)	Temp (°C)	Sp.Cond. µmhos(25°)	TDS mg/1	Cl mg/1	Br mg/1
- 42	4.39	1.0	13460			
43	4.62	1.0	16150			
44	4.74	1.4	17050			
45	4.89	2.0	16480			
46	5.03	2.2	18380			
47	5.11	2.2	18570			
48	5.21	3.5	12110		÷	
49	5.36	4.0	19140	11400		0.85
50	5.44	5.7	18400			
51	5.64	2.4	19340	- at pie	ez site	3
52	5.74	3.9	16960			
53	5.93	3.8	18750			
54	6.14	3.0	19460			
55	6.24	3.8	19620			
56	6.33	4.0	19660	11000	5940	0.88
				- just	upstream	of Revuel
57	7.09	5.0	8830			
58	7.30	5.3	10230			
59	7.65	6.1	10770			
60	7.83	6.1	11090			
61	8.06	4.9	10700	- river	bends t	o east
62	8.22	5.2	10600	6260	2980	0.69
63	8.39	4.8	11410			
64	8.60	5.1	9970			
65	8.86	4.0	10170			
66	9.15	3.1	9070			1
67	9.28	3.9	8820			*
68	9.43	3.6	8920	5450	2580	0.65
69	11.06	0.4	6890			
70	11.33	0.7	6420	3880	2880	0.47
71	11.55	0.9	6370			
. 72	11.98	0.5	6670			
73	12.17	0.7	6810			
74	12.29	0.6	7230			
75	12.50	0.7	7200			
76	12.72	1.0	7310			
77	12.96	1.0	7580			
78	13.14	1.2	7650			
79	13.46	1.6	7740			
80	13.66	1.5	7830		¥.	
81	13.77	1.6	7930			

HYDRO GEO CHEM, INC. FINAL REPORT LAKE MEREDITH SALINITY INVESTIGATION

Sample	Distance from Ute Dam (miles)	Temp (°C)	Sp.Cond. µmhos(25°)	TDS mg/1	C1 mg/1	Br mg/1
82	14.00	1.6	7930			
83	14.19	2.0	8070	4740	5280	0.59
84	14.37	2.0	8190			
85	14.68	2.7	8390			
86	14.99	2.3	8790			
87	15.25	2.1	9100			
88	15.37	2.2	9060			
89	15.54	1.7	9550	5660	2640	0.75
90	15.78	2.0		- mouth	of Tusc	ocuillo
91	16.02	3.0	9110			
92	16.36	2.5	91 80			
93	16.85	2.0	8870			
94	17.23	3.0	8590			
95	17.28	3.9	7940			
· 96	17.67	3.6	7810			
97	18.15	3.6	7690			
98	18.53	4.1	7920	4660	2120	0.64
99	18.71	5.2	7900			
100	19.03			5310	2480	0.60
101	20.73			5340	2480	0.64
102	22.62			5520	2580	0.62
103	24.03			5130	2360	0.60
vuelto (
	Distance upstream					
	from confluence					
1	0.11			1290	93	0.47
5	2.41			1430	157	0.45
11	4.31			1280	48	0.49
18	6.59			1180	50	0.53
22	7.62			1360	73	0.80
24	8.88			950	35	0.46

Table B.3: Continued

THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA 85721

DEPARTMENT OF GEOSCIENCES LABORATORY OF ISOTOPE GEOCHEMISTRY TEL. (602) 621-6014

John Ward Hydro Geo Chem, Inc. 744 N. Country Club Tucson, AZ 85716

Dear John,

Here is written "proof" of your isotopic analyses. Again, sorry that it took so long to get your numbers to you. Since Song-lin called you last week, we have a repeat analysis on one of your ¹⁰O's that we felt was strange in comparision to the deuterium value; as you can see, the number is virtually identical. Perhaps you can explain it? As you asked, I will bill you seperately for these samples. The other two that you sent along with these, H-9 and H-13, will be billed and reported to Gary Walter.

Sincerely, VIA

Lisa Warneke, Research Assistant

<u>Sample</u>		δ ¹⁸ 0(⁰ /00)	<u>δD(0/00)</u>	both w.r.t. SMOW
HGC 1	HTE DAM	-2.49/-2.58	-22.4 -	
HGC 2	OW-3	-9.84	-71.2-71.7	

EMICAL ANALYSIS

PETROLEUM

LABUHAIUHIES INC J I FOLINI, RIG CHIM FINGE JOIG UNION AVE BAKERSFIELD, CALIFORNIA 93305 MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 North Country Club Road Tucson, Arizona 85716 Date Reported: 10/18/83 Date Received: 10/3/83 Laboratory No.: 10729

WATER ANALYSIS

Sample Description: 5. 9/22/83 1400

Constituents

Calcium Magnesium Sodium Potassium Carbonate Bicarbonate Chloride Sulfate Nitrate Total Dissolved Solids Boron Silica Hardness as CaCO₃

Electrical Conductivity, Micromhos pH

B C LABORATORIES, INC.

glin BY

ad

Parts/million	
1,360.	
610. 29,000.	
64. 0.	
904.	
43,719.	
5,250.	
(<) 0.4	
80,948. 3.5	
37.	
5,913. (345 gr/g	yal)
70,650.	
6.6	

Well:	"Dripping Springs"
	(Permian-Yeso?)
Location:	13.31.25.12
Date:	9-22-83
Time:	1400
Temp:	22.8°C
pH:	6.02
Alkalinity:	765 mg/l
-	_

Hydro Geo Chem, Inc. 744 North Country Club Road Tucson, Arizona 85716 .

.

Date	Reported:	10/18/83
Date	Received:	10/3/83
Labor	ratory No.:	10730

WATER ANALYSIS

Sample Description: 6. 9/22/83 1600

Constituents	Parts/million
Calcium	210.
Magnesium	85.
Sodium	49.
Potassium	4.9
Carbonate	0.
Bicarbonate	355.
Chloride	42.5
Sulfate	600.
	1.3
Nitrate	1,375.
Total Dissolved Solids	0.08
Boron	27.
Silica	
Hardness as CaCO3	875. (51.1 gr/gal)
Electrical Conductivity, Micromhos	1,610. 7.3

B C LABORATORIES, INC.

pH.

BY

ad

Well:	"Logan Cemetary
	Windmill" (Triassic)
Location:	13.33.1.43
Date:	9-22-83
Time:	1600
Temp:	18.0°C
pH:	6.96
Alkalinity:	300 mg/l

PETROLEUM

AGRICUL TURE

LABORATORIES INC 3 J FOLIM. NEG CHEM ENGR 3016 UNION AVE BAKERSFIELD, CALIFORNIA 93305 MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 N. Country Club Tucson, Arizona 85716

BC

Date Reported: 12/2/83 Date Received: 11/7/83 Laboratory No.: 12515

Attention: Mr. John Ward

WATER ANALYSIS

Sample Description: #1

Constituents

Calcium	37.
Magnesium	23.
Sodium	340.
Potassium	4.9
Carbonate	0.
Bicarbonate	343.
Chloride	332.
Sulfate	190.
Nitrate	(4) 0.4
Total Dissolved Solids, By Summation	1,270.
Boron	0.21

(4) refers to "less than"

B C LABORATORIES. INC.

BY

kc

Field Parameters

Parts/million

Ute Dam seep	age (sluice box)
Location:	13.33.21.2
Date:	10-17-83
Time:	1600
Temp:	15.5°C
pH:	7.85
Alkalinity:	
Spec. cond.	$(25^{\circ}) = 2040 \ \mu mhos$

MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 N. Country Club Tucson, Arizona 85716 Date Reported: 12/2/83 Date Received: 11/7/83 Laboratory No.: 12516

Attention: Mr. John Ward

WATER ANALYSIS

Sample Description: #2

Constituents	Parts/million
Calcium	800.
Magnesium	220.
Sodium	17,500.
Potassium	75.
Carbonate	0.
Bizarbonate	159.
Chloride	27,435.
Sulfate	2,880.
Nitrate	(4) 0.4
Total Dissolved Solids, By Summation	49,072.
Boron	3.2

(4) refers to "less than"

B C LABORATORIES, INC. BY_____J. J. Eglin

Well:	OW-3 (Lower Triassic-
	upper Permian?)
Location:	13.33.15.13
Date:	10-17-83
Time:	1740
Temp:	19.0°C
pH:	6.36
Alkalinity:	836 mg/l
Spec. cond.	$(25^{\circ}) = 78,400 \ \mu mhos$

CHEMICAL ANALYSIS

I I FOLM. REG CHEM ENGR BAKERSFIELD, CALIFORNIA 93305 3016 UNION AVE MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 N. Country Club Tucson, Arizona 85716

BC

Date Reported: 12/2/83 Date Received: 11/7/83 Laboratory No.: 12517

Attention: Mr. John Ward

WATER ANALYSIS

Sample Description: #3

Constituents

Parts/million

Calcium		580.
Magnesium	-	145.
Sodium		6,900.
Potassium		35.
Carbonate		0.
Bicarbonate		849.
Chloride		10,832.
Sulfate		1,440.
Nitrate		(<) 0.4
Total Dissolved	Solids, By Summatic	n 20,783.
Boron		1.5

(4) refers to "less than"

B C LABORATORIES, INC.

BY

kc

Well:	Piezometer site 6:50' (Channel deposits)
Location:	13.34.5.12
Date:	10-18-83
Time:	1000
Temp:	18.0°C
pH:	6.60
Alkalinity:	803 mg/l

Hydro Geo Chem, Inc. 744 N. Country Club Tucson, Arizona 85716

Date	Reported:	12/2/83
Date	Received:	11/7/83
Labor	ratory No.:	12519

Attention: Mr. John Ward

WATER ANALYSIS

Sample Description: #5

Constituents .	Parts/million
Calcium -	360.
Magnesium	130.
Sodium	4,800.
Potassium	19.
Carbonate	0.
Bicarbonate	255.
Chloride	7,788.
Sulfate	920.
Nitrate	(∠) 0.4
Total Dissolved Solids, By Summation	n 14,273.
Boron	1.0

(<) refers to "less than"

B C LABORATORIES, INC.

BY

kc

Well:	Piezometer site 2:55'
	(Channel deposits)
Location:	13.33.14.24
Date:	10-18-83
Time:	1400
Temp:	17.0°C
pH:	6.95
Alkalinity:	325 mg/l
Spec. cond.	$(25^{\circ}) = 25,000 \ \mu mhos$

ASP:CULTURE

EMICAL ANALYSIS

PETROLEUM

LABORATORIES INC J EGLIM. BIG CHIM ENGR 3016 UNION AVE BAKERSFIELD, CALIFORNIA 93305 MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 N. Country Club Tucson, Arizona 85716

BC

Date Reported: 12/2/83 Date Received: 11/7/83 Laboratory No.: 12518 No at

Attention: Mr. John Ward

WATER ANALYSIS

Sample Description: #4

Constituents

Parts/million

Calcium	420.
Magnesium •	170.
Sodium	8,700.
Potassium	28.
Carbonate	0.
Bicarbonate	520.
Chloride	13,275.
Sulfate	1,600.
Nitrate	(4) 0.4
Total Dissolved Solids, By Summation	24,714.
Boron	1.0

(4) refers to "less than"

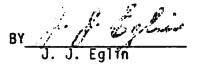
B C LABORATORIES, INC. BY Egli

kc

Well:	Piezometer site 3:35'
	(Channel deposit)
Location:	13.33.12.23
Date:	10-18-83
Time:	1130
Temp:	18.0°C
pH:	6.90
Alkalinity:	452 mg/l
Spec. cond.	$(25^{\circ}) = 44,500 \ \mu mhos$

MAIN OFFICE 4100 PIERCE ROAD. BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 North Country Club Road Tucson, Arizona 85716


Date	Reported:	10/18/83
Date	Received:	10/3/83
Labor	ratory No.:	10727

WATER ANALYSIS

Sample Description: 1. 9/21/83 1000

<u>Constituents</u>	Parts/million
Calcium	61.
Magnesium	21.
Sodium	23.
Potassium	3.5
Carbonate	0.
Bicarbonate	229.
Chloride	23.0
Sulfate	60.
Nitrate	9.3
Total Dissolved Solids	456.
Boron	1.5
Silica	25.
Hardness as CaCO ₃	239. (14.0 gr/gal)
Electrical Conductivity, Micromhos	570.
pH	7.6

B C LABORATORIES, INC.

ad

Triassic Spri	ing
Location:	13.32.1
Date:	9-21-83
Time:	1000
Temp:	19.4°C
pH:	7.50
Alkalinity:	200 mg/l

VEMICAL ANALYSIS

PETROLEUM

J J IGUM, NG CHIM INGA JOIG UNION AVE BAKERSFIELD, CALIFORNIA 93305 MAIN OFFICE 4100 PIERCE ROAD, BAKERSFIELD CA 93308 PHONE 327-4911

Hydro Geo Chem, Inc. 744 North Country Club Road Tucson, Arizona 85716

BC

Date Reported:	10/18/83
Date Received:	10/3/83
Laboratory No.:	10728

INC

WATER ANALYSIS

Sample Description: 4. 9/22/83 1030

Constituents

Calcium Magnesium Sodium Potassium Carbonate Bicarbonate Chloride Sulfate Nitrate Total Dissolved Solids Boron Silica Hardness as CaCO₃

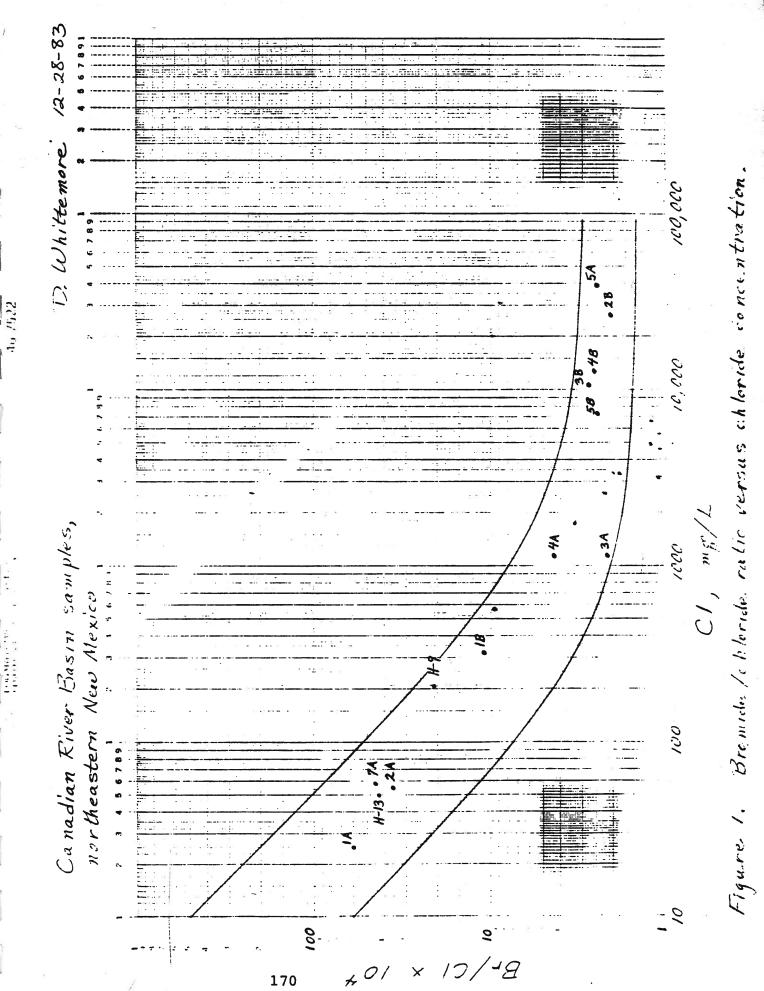
Electrical Conductivity, Micromhos pH

B C LABORATORIES, INC.

ad

140. 190. 205. 7.1 0. 761. 255. 548. (<) 0.4 2,122. 0.10 16. 1,132. (66.1 gr/gal) 2,800. 7.5

Parts/million


Well:	"Revuelto Windmill:	Creek (Triassic)
Location:	13.33.24	(,
Date:	9-22-83	
Time:	1000	
Temp:	18.0°C	
pH:	6.93	
Alkalinity:	580 mg/l	

of the waters could be made by comparing variations in the iodide/chloride values with concentrations and ratios of other major and minor constituents and isotopic ratios of the waters.

Oilfield brines usually have bromide/chloride ratios falling within the range 10×10^4 to 60×10^4 . The approximate center of this range is the value for seawater, 34×10^4 . Iodide/chloride ratios in oilfield brines typically are above 60×10^6 , commonly exceed 100×10^6 , and range to well over 1000×10^6 . Therefore, sample 5A, identified as collected from an abandoned oil or gas well, does not appear to be formation water associated with oil and gas, but halite-solution brine that has entered the well.

REFERENCES

- Basel, C.L., J.D. Defreese, and D.O. Whittemore, 1982. Interferences in automated phenol red method for determination of bromide in water: Analytical Chemistry <u>54</u>: 2090-2094.
- Whittemore, D.O., 1984. Geochemical identification of salinity sources: in R.H. French, ed., Salinity in Watercourses and Reservoirs (Proceedings of the International Conference on State-of-the-Art Control of Salinity) Ann Arbor Science, Woburn, Mass. (in press).
- Whittemore, D.O., C.L. Basel, O.K. Galle, and T.C. Waugh, 1981. Geochemical identification of saltwater sources in the Smoky Hill River Valley, McPherson, Saline, and Dickinson Counties, Kansas: Kansas Geological Survey Open-File Report 81-6, 78 p.

FINAL REPORT

LAKE MEREDITH SALINITY INVESTIGATION

APPENDIX C

WATER BUDGET TABLES

LAKB MEREDITH SALINITY STUDY

FINAL REPORT

HYDRO GEO CHEM, INC

Table C.1: Nonthly water-budget results for Lake Meredith Inflow = Amarillo flow + reservoir rainfall Outflow = Diversions + Dam seepage + Evaporation Residual = Outflow - Inflow + Change in Storage All values in acre-feet except precipitation and evaporation

		Chanse in	Amerillo	Precip	Inflow	Pan Evan	Divor-	Out-	Resi-
	Storage	Storage	Flow	(in.)		(in.)	sions	flov	dual
0CT 64	2220.	2220.	732.	0.44*	750.	7.629*	••	238.	1708
NOV 64	3280.	1060.	1160.	0.57*	1189.	4.184*	•	165.	37
DEC 64	4100.	820.	524.	0.48*	552.	2.812*	•	137.	405
JAN 65	4460.	360.	429.	0.35*	452.	3 .044*	••	167.	75.
FEB 65	4890.	430.	388.	0.19	401.	3 .954*	•	223.	252.
MAR 65	5570.	680.	594.	0.92	659.	6.815*	•	365.	386
APR 65	5060.	-510.	332.	0.39	358.	9.947*	•	490.	-378.
	17710.	12650.	21330.	4.10	21843.	11.387*	•	1044.	-8149
JUN 65	157400.	139690.	195200.	8.63	199587.	13.546*	•	5014.	-54883
JUL 65	162800.	5400.	14650.	0.37	14841.	14.405*	•	5407.	-4035
AUG 65	176400.	13600.	24170.	2.90	25741.	12.554*	•	4966.	-7174
SEP 65	181900.	5500.	13170.	0.95	13693.	9.206*	•	3754.	-4439
OCT 65	210100.	28200.	42380.	0.84	42842.	7.629*	•	3147.	-11495
NOV 65	214300.	4200.	11250.	0.01*	11256.	4.184*	•	1958.	-5098.
DEC 65	214700.	400.	2420.	0.68	2828.	2.812*	•	1410.	-1018
JAN 66	216100.	1400.	666.	0.32	858.	3 .044*	•	1507.	2049
FIEB 66	219000.	2900.	2830.	0.92	3382.	3.954*	•	1889.	1407
MAR 66	218400.	-600.	2090.	•00.0	2090.	6.815*	•	3091.	401
APR 66	215900.	-2500.	559.	0.40	. 499.	9.947*	•	4406.	1107
NAY 66	211600.	-4300.	813.	0.02	825.	11.387*	•	4942.	-183
JUN 66	214800.	3200.	10660.	4.39	13257.	17.000	•	7266.	-2791
JUL 66	216700.	1900.	8420.	1.97	9602.	17.390	••	7532.	-170.
-	228500.	11800.	26050.	4.24	28629.	10.930	••	4886.	-11943
	231400.	2900.	6320.	1.14	7033	7.730	••	3020.	-113
_	227600.	-3800.	593.	0.60	963.	8.090	•••	3727.	-1036.
	225000.	-2600.	656.	0.01	662.	6.040	190.	3032.	-230.
	223300.	-1700.	756.	0.03	774.	4.080	••	1969.	-202-
JAN 67	222900.	-400.	1510.	0.01	1516.	5.110		2413.	497
FEB 67	222200.	-700.	858.	0.20	980.	3.760	21.	1854.	174
WAR 67	220600.	-1600.	688.	0.20	808.	5.750	320.	2964.	556.
APR 67	228900.	8300.	14490.	2.58	16081.	8.250	576.	4372.	-3409
NAY 67	225800.	-3100.	2570.	1.37	3415.	9.730	537.	4972.	-1543
70N 67	259100.	33300.	30870.	3.19	32997.	8.350	653.	4804	5107
JUL 67	312400.	53300.	99410.	5.33	103319.	8.000	132.	4518.	-45501
AUG 67	320800.	8400.	19820.	2.63	21793.	7.670	. 170	5289.	-8103
SEP 67	322900.	2100.	13890.	0.45	14228.	5.800	•	3331.	-8797
0CT 67	320700.	-2200.	19470.	0.41	19778.	6.580	•	3740.	-18237
NOV 67	319300.	-1400.	6180.	0.26	6373.	2.510	•	1586.	-6187
DEC 67	320200.	006	4940.	0.23	5113.	1.870	•	1267.	-2945.
							•	< 7 U 7	400
JAN 68	324800.	4600.	5210.	1.05	.3996.	2.730		. KT/T	. 170

and the day L

l

in a state of the states in U

LAKE MERBDITH SALINITY STUDY

FINAL REPORT

HYDRO GEO CHEM, INC

Month-end Charge Harrillo Front Line Front Line Line <thline< th=""> <thline< th=""> <thline< th=""></thline<></thline<></thline<>		Lake M	Lake Morodith			1	; ;			
68 325200. -1400. 1100. 1348. 13.41. 903. 68 322400. -2800. 1662. 1.54 1817. 12.000 903. 68 325200. -2800. 16770. 1.440. 1.01 10702. 12.000 9354. 68 325900. -7900. 16770. 0.15 13.81 10702. 12.000 9354. 68 325900. -7000. 16770. 0.15 13.81 10702. 12.000 9354. 68 305000. -6100. 938. 0.26 973. 11.738 424.0 13.82 69 305400. 1380. 0.26 473. 4.4186 3574. 69 305400. 1380. 13.40 0.354. 4.118 3574. 69 305400. 1380. 2.376 374.1 32.341. 32.341. 69 305400. 13.10 0.313.0 0.356. 2.416 32.341. 69	Date	Month-end Storage	Change in Storage	Amarillo Flow	Frecip (in.)	AOTJUT	ran Evap (in.)	sions		kesi- dual
66 322400. -2800. 1662. 1.54 1817. 11.00 290. 68 327200. -2800. 15730. 2.26 1381. 11.00 3554. 68 327500. -900. 1570. 1.03 1573. 11.03 1574. 68 327500. -10400. 1270. 1.03 1373. 11.738 4326. 68 327500. -1700. 3830. 1.44 1373. 11.738 4326. 68 305700. -6100. 9330. 0.401. 1.367. 1.1738 4326. 69 294900. -6100. 9330. 0.264. 1.473. 44.86 3774. 69 305400. 17100. 33130. 2.407 3.473. 3.273 3.574. 3.743. 69 305400. 17100. 33130. 2.467 3.743. 3.274. 3.274. 3.274. 69 305400. 1310. 0.564. 4.460 3.743. <th< td=""><td>(AR 68</td><td>325200.</td><td>-1400.</td><td>1100.</td><td>0.33</td><td>1348.</td><td>3.410</td><td>803.</td><td>2879.</td><td>131</td></th<>	(AR 68	325200.	-1400.	1100.	0.33	1348.	3.410	803.	2879.	131
68 322200. 5800. 11530. 2.76 13344. 10.130 2340. 68 322300. -9000. 14430. 1.01 18333. 11.036 4240. 68 322900. -9000. 14430. 1.01 18333. 11.036 4240. 68 312900. -4100. 3830. 1.270. 0.12 3834. 68 312900. -4100. 3830. 1.4450. 3.01 18333. 11.036 4240. 68 30700. -5100. 913. 0.02 3493 9.354. 69 28400. -5100. 3130. 0.26 4733 544. 69 28400. 184. 0.01 3.05 4.446 534. 69 35600. 184. 0.56 3.314 3.324 544. 69 36700. 1870. 0.313 0.36 3.44 543. 69 36700. 1870. 0.331 0.34 0.343	VPR 68	322400.	-2800.	662.	1.54	1817.	12.000	930.	7516.	2899
68 332500. $-3000.$ $13770.$ 4.13 $11072.$ 11.036 $3274.$ $1381.$ 11.036 $3374.$ $1381.$ 11.036 $3374.$ $1381.$ 11.036 $3374.$ $1381.$ 11.036 $3374.$ $1381.$ $11.036.$ $3374.$ $33129.$ $11.41.036.$ $3374.$ $33129.$ $11.738.$ $3374.$ $33124.$ $33124.$ $11.460.$ $33124.$ $11.460.$ $33124.$ $11.460.$ $33124.$ $3324.$ 3		328200.	5800.	11630.	2.26	13344.	10.150	2740.	8417.	873
68 322900. -900. 14450. 1.03 15223. 11.056 4246. 68 325900. -7100. 12670. 1.44 1333. 11.758 4326. 68 31600. -6100. 988. 0.526 577. 1.975 4326. 68 306800. -6100. 988. 0.526 577. 1.975 4326. 69 294900. -6100. 3180. 0.266 343. 4436 3576. 69 294900. 17100. 3180. 0.36 4436 5376. 69 35400. 17560. 3180. 0.36 374. 3.374. 69 35400. 17560. 3180. 0.36 374. 3.376. 69 35400. 13560. 3939. 1.376. 3438. 374. 69 36400. 105400. 2.96 0.374. 14.114 697. 69 45500. 3939. 2.374. 3.466. 3439.		326200.	-2000.	7570.	4.13	10702.	12.000	3554.	10213.	-2489
68 328000 2700 16070 3.01 13331 11.758 3734. 1 68 317600 -1000 3830 026° 597. 11.758 3734. 3822. 68 307600 -6100 988. 026° 597. 1.975 3822. 69 294900 -3800 918. 026° 597. 1.367 3426. 69 294900 -1000 3180. 0255 3574. 3205 3547. 69 23400 17100. 33130. 390 35958. 103267 7128. 69 35700. 15900. 33850. 249 107344. 4896 337 3367 3367 4466 5343 5443 5243 5433 5434 5434 5434 5434 5436 5434 5436 5434 5436 5434 5436 5434 5436 5434 5436 54393		325300.	- 900 -	14450.	1.03	15223.	11.036	4240.	10320.	-5803
68 317600 -10400 1270 015 1381 10809 4326 1382 68 300700 -6100 983 0.124 4898 8.739 3526 68 300700 -6100 983 0.25 597 1.975 4192 69 294500 -3000 2180 0.25 597 1.975 4192 69 294500 -4000 3180 0.55 3574 3.205 2354 69 39500 184 0.55 3574 3.205 2488 69 35400 1700 3130 3.407 4.48 5.44 69 35500 184 0.55 1.47 382 5.35 69 45500 1710 3130 3.47 3.205 3536 69 45500 107145 1.1114 2.49 3743 5.43 69 45500 105400 10744 1446 5.493 3.416		328000.	2700.	16070.	3.01	18353.	11.758	3734.	10264.	-5388
68 312900 -4700 3830 1.44 4898 6.72 3.816 3.852 3562 68 300700 -6100 988 0.52 3369 3.136 3816 3896 68 294900 -3000 3180 0.52 3740 4.136 3894 69 294900 -7000 3180 0.55 3574 4.136 3894 69 38700 11840 0.55 3574 4.366 3594 69 35700 11800 38950 2.36 4939 2.433 2443 69 35700 15300 39930 2.46 10714 5994 2443 69 46500 5500 23900 1.64 2345 7128 4366 70 45700 -5000 33990 1.446 5393 5436 69 46800 7000 10714 2473 2.128		317600.	-10400.	1270.	0.15	13.81.	10.809	4326.	10220.	-1561.
68 306800. -6100. 988. 026 357. 3.16 3.76		312900.	-4700.	3830.	1.44	4898.	8.739	3562.	8382.	-1216
68 300700. -6100. 408. 0.26° $597.$ 1.975 4192 $3594.$ 69 294900. -3800. 2140. 3180. 0.01 256. 4.160 3574. 69 294900. -400. 3180. 0.55 3574. 4.460 376. 69 294900. -400. 3180. 0.55 3573. 4.460 376. 69 369700. 17500. 3130. 3.90 30593. 10.524 438. 69 369700. 15500. 38950. 2.37 3.2634. 14.114 6997. 69 46300. 5500. 23900. 1.64 2550 4394. 69 46300. 5500. 23900. 1.64 2550 4394. 69 46300. 5500. 23900. 1.64 2550 4594. 69 46300. 2390. 1.64 2550 4594. 466. 71 45100. 100		306800.	-6100.	988.	0.52	1369.	3.816	3862.	6100.	-1369
69 296900 -3800 919 0.01 926 4.116 3694 69 294300 -2400 3180 0.01 926 4.136 3694 69 294300 -1600 3180 0.35 373 -4.46 373 -4.46 373 -4.46 374 -313 -303 -4.46 -313 -303 -4.46 -373 -4.46 -374 -313 -303 -4.46 -313 -303 -2400 -3100 -3100 -3100 -3146 -10.567 -1128 -4.912 -3243 -4.912		300700.	-6100.	408.	0.26*	597.	1.975	4192.	5471.	-1226
69 294500. $-2400.$ $2740.$ 1.86 $4073.$ 4.460 $3574.$ $3.744.$ $3.574.$ $3.574.$ $3.574.$ $3.574.$ $3.574.$ $3.574.$ $3.574.$ $3.574.$ $3.543.$ $3.574.$ $3.543.$ $3.574.$ $3.543.$ $3.574.$ $3.543.$ $2.343.$ $2.434.$ $2.434.$ $2.434.$ $2.434.$ $2.434.$ $2.343.$		296900.	-3800.	919.	0.01	926.	4,136	3694.	6042.	1316
69 294900. 400. 3180. 055 3574. 3205 2354. 5205 2354. 5205 2354. 5205 2354. 5205 2354. 5205 2354. 5205 2354. 5215 40838. 10752. 7128. 5216 40838. 13567 7128. 5566. 5566. 5567 7128. 5566. 5567 7128. 5567 7128. 5567 7128. 5567 7128. 5566 4599. 5567 7128. 5567 7128. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 5567 4599. 55676 4599. 5576		294500.	-2400.	2740.	1.86	4073.	4.460	3576.	6086.	-387
69 288300. -6600. 184. 0.36 439. 5243. 1 69 305400. 17100. 3130. 3.97 3.978 10.592 13.132 6488. 1 69 356700. 15500. 38950. 2.36 40858. 13.567 7128. 1 69 35600. 5900. 29910. 3.37 35634. 14.114 6977. 1 69 46500. 5500. 29700. 2.49 107745. 7.128. 1 69 46500. 5700. 2970. 0.44 5084. 3 4 5 70 46500. -4000. 4670. 0.44 5 3 3 2 4 5 4 8 3<		294900.	400.	3180.	0.55	3574.	3.205	2354.	4235.	1061
69305400.17100.33130.3.9035958.10.5924438.169359700.178700.38910.3.913.978002.11.1146911.69359700.15900.3910.3.3732634.14.1146911.6945800.5500.29910.3.3732634.14.1146911.6945800.5500.29910.3.3732634.14.1146911.69464500.1060.1.642.49107145.7.1284332.694657004000.2700.0.0743035.2.664486.70457002200.3400.0.0743035.2.644486.704591001600.1790.0.0743035.2.644486.70459100.13200.21790.0.0743035.2.644486.71459100.13200.2410.0.35832711.4.217388.71459100.13200.0.0732015.17.9387098.71459100.1340.0.7332015.17.9387098.71451007500.1340.0.7332015.11.32070451007100.1340.0.7332015.11.32071451007100.1340.0.7332015.11.32070431007500.1340.0.7332014.4.91971431007500.<		288300.	-6600.	184.	0.36	439.	9.334	5243.	10141.	3102
69354200.48800.76870.4.0780092.12.1126068.169356700.15500.38950.2.3540858.13.5677128.16945000.5500.38950.2.3540958.13.5677128.16945500.5500.3500.107745.7.1284599.6945500.5500.29910.2.4716.425458.5.5504594.69455004000.4670.0.445084.3.3424699.69455004000.4670.0.073035.2.2644886.70457001200.3400.0.02*3419.2.2794699.7045700.19300.1770.0.07*30351.9.2244868.704570010300.1340.0.5830261.9.2244868.704590010300.1340.0.7932015.16.0085793.704590012800.1.602.4977043.665.4669.704590012800.1340.0.7932015.11.3205490.7045100.1560.0.380.423.655.11.3205491.70453007300.19960.1.602147.15.3447445.70453007300.1340.0.7932015.16.2045491.70438007300.1890.0.793 <td< td=""><td></td><td>305400.</td><td>17100.</td><td>33130.</td><td>3.90</td><td>35958.</td><td>10.592</td><td>4458.</td><td>10110.</td><td>-8748.</td></td<>		305400.	17100.	33130.	3.90	35958.	10.592	4458.	10110.	-8748.
69369700.15500.38950.2.3640858.13.5677128.16937600.58000.29910. 3.37 3.234 14.114 $6997.$ 169463000.55000.29910. 3.37 $3.254.$ 14.114 $6997.$ 16946300.55000. $2970.$ 0.07 $3.543.$ 14.114 $6997.$ $14570.$ 6945900. $-4600.$ $2970.$ 0.07 $3035.$ 2.564 $4486.$ 7045700. $-1200.$ $3400.$ 0.07 $3035.$ 2.264 $4486.$ 7045700. $-1300.$ $17920.$ 0.07 $3035.$ 2.264 $4486.$ 7045700. $-1300.$ $1790.$ 0.07 $3035.$ 2.264 $4486.$ 7045700. $-1300.$ $1790.$ 0.72 $3117.$ 2.271 $3320.$ 7045700. $-1300.$ $1790.$ 0.73 $2.147.$ $4.317.$ $2862.$ 7045700. $-12800.$ $1340.$ 0.73 $2141.$ $4.317.$ $2862.$ 70458100. $-12800.$ $1340.$ 0.73 $2141.$ $4.317.$ $2862.$ 70458100. $-12800.$ $1340.$ 0.73 $2147.$ $1456.$ $4997.$ 70458100. $-12800.$ $1340.$ 0.73 $2147.$ $1456.$ $4497.$ 70438100. $-7300.$ $1870.$ 0.73 $2149.$ $708.$ $1745.$ 704380		354200.	48800.	76870.	4.07	80092.	12.112	6068.	13082.	-18210
69 376600 6900 29910 3.37 32634. 14.114 6997. 1 69 46300. 5500. 29900. 1.64 25458. 5.550 4534 69 46300. 5500. 29900. 1.64 25458. 5.550 4534 70 457700. -4600. 29710. 0.074 3035. 2.664 486. 70 457700. -2200. 3400. 0.073 3419. 2.279 3320. 70 457700. -9300. 1320. 0.073 3419. 2.279 3320. 70 459700. -9300. 1320. 0.073 3271. 4.919 368. 70 459700. 1320. 0.58 30261. 9.24 486. 1 70 45100. 1330. 1340. 0.58 30261. 9.24 486. 70 45100. 1.600. 1.600. 1.600. 117.93 7445. 70		369700.	15500.	38950.	2.36	40858.	13.567	7128.	15113.	-10245
69463000.86400.105400. 2.49 $107745.$ 7.128 $4332.$ 6946800.5500.23900. 1.64 $25438.$ 5.550 $4594.$ 6945900. $4670.$ $29710.$ 0.44 $5034.$ 3.642 $4699.$ 70 $45700.$ $-2200.$ $3400.$ 0.02° $3419.$ 3.642 $4699.$ 70 $457400.$ $-3300.$ $1790.$ 0.02° $3419.$ $2.564.$ $486.$ 70 $457400.$ $-3300.$ $1790.$ 0.02° $3419.$ 2.274 $4868.$ 70 $457400.$ $-13300.$ $1790.$ $0.26.$ $2371.$ 4.919 $3688.$ 70 $45700.$ $19300.$ $29710.$ $0.266.$ $2640.$ 186.008 $5793.$ 70 $45000.$ $1790.$ $0.268.$ 16.008 $5793.$ $17.938.$ $7098.$ 70 $45000.$ $1790.$ $0.736.$ $2632.$ $11.220.$ $5490.$ $11.230.$ 70 $438100.$ $-12800.$ $1870.$ $0.248.$ $21477.$ $11.320.$ $5490.$ 70 $438300.$ $-7300.$ $1870.$ $0.736.$ $21477.$ $11.320.$ $5490.$ 70 $417500.$ $-7300.$ $1870.$ $0.736.$ $21477.$ $11.320.$ $5497.$ 70 $417500.$ $-7700.$ $1870.$ $0.736.$ $21477.$ $11.220.$ $5497.$ 71 $412700.$ $-7700.$ $1870.$ $0.779.$ $21477.$ $11.220.$ 5497		376600.	6900.	29910.	3.37	32634.	14.114	6997.	15291.	-10443
69468500.5500.23900.1.64 $25458.$ 5.550 $4594.$ 694645004000. $4670.$ 0.07 $3035.$ 5.550 $4594.$ 70 $457700.$ -4600. $2970.$ 0.07 $3035.$ $2.664.$ $4486.$ 70 $457700.$ -2200. $3700.$ 0.07 $3320.$ $3249.$ $4699.$ 70 $457700.$ -2200. $1790.$ 0.07 $30261.$ $9.224.$ $4868.$ $186.$ 70 $469700.$ 19300. $29710.$ 0.58 $30261.$ $9.224.$ $4868.$ $18793.$ 70 $469700.$ 19300. $29710.$ 0.73 $2021.$ $4.517.$ $2862.$ 70 $459000.$ $-10300.$ $1340.$ 0.73 $2021.$ $4.517.$ $2862.$ 70 $459000.$ $-10300.$ $1340.$ 0.73 $2015.$ $16.204.$ $6180.$ 70 $438100.$ $-12800.$ $2340.$ $1.60.$ $21427.$ $17.938.$ $7098.$ 70 $438100.$ $-7200.$ $19960.$ $1.60.$ $21427.$ $15.344.$ $7048.$ 70 $438100.$ $-7200.$ $19960.$ $1.60.$ $21427.$ $15.344.$ $7048.$ 70 $439200.$ $-7200.$ $19960.$ $1.60.$ $2191.$ $6.756.$ $4609.$ 70 $43920.$ $1.60.$ $1996.$ $1.60.$ $2191.$ $6.756.$ $409.$ 70 $43990.$ $-7200.$ $1996.$ $0.777.$ $12427.$ $12.326.$ <td< td=""><td></td><td>463000.</td><td>86400.</td><td>105400.</td><td>2.49</td><td>107745.</td><td>7.128</td><td>4332.</td><td>9389.</td><td>-11955</td></td<>		463000.	86400.	105400.	2.49	107745.	7.128	4332.	9389.	-11955
694645004000.4670. 0.44 5084. 3.842 4699.704577002200. $3400.$ 0.07 $3035.$ 2.564 $4486.$ 704577002200. $3400.$ 0.07 $3035.$ 2.2517 $3320.$ 704577003300. $1320.$ 0.02^{*} $3419.$ 2.279 $3320.$ 7045770010300. $1720.$ 0.02^{*} $3419.$ 2.279 $3320.$ 70455700.19300. $2770.$ 0.52 $22711.$ 4.517 $2862.$ 7045500010300. $2740.$ 0.53 $30261.$ 9.224 $486.$ 704550007500. $1340.$ 0.73 $2015.$ $16.204.$ $6180.$ $1170.$ 704381007100. $1340.$ 0.73 $2015.$ $16.204.$ $6180.$ $1170.$ 704381007790. $1340.$ 0.73 $2015.$ $11.320.$ $5490.$ $11.703.$ 704381007790. $1340.$ 0.73 $2015.$ $11.320.$ $5490.$ $11.703.$ 704375007700. $8380.$ 0.73 $21427.$ $15.344.$ $7445.$ $11.7270.$ 704375007700. $1370.$ $0.366.$ 0.73 $21427.$ $11.320.$ $5490.$ 71 $417500.$ -7700. $1370.$ 0.73 $21427.$ $11.320.$ $5490.$ $11.46.$ 71 $417500.$ $-7200.$ $1350.$		468500.	5500.	23900.	1.64	25458.	5.550	4594.	8647.	-11311
69 459900. -4600. $2970.$ 0.07 $3035.$ 2.664 $4486.$ 70 $457700.$ $-2200.$ $3400.$ $0.02*$ $3119.$ 2.279 $3320.$ 70 $457700.$ $-3300.$ $1320.$ $0.02*$ $3119.$ 2.279 $3320.$ 70 $45700.$ $1390.$ 0.52 $3119.$ 2.279 $3320.$ 70 $45700.$ $1390.$ 0.52 $3141.$ 9.224 $486.$ 70 $45090.$ $-10300.$ $1340.$ 0.75 $22571.$ 4.517 $266.$ $4486.$ 70 $45500.$ $-7300.$ $1340.$ 0.73 $2015.$ $17.938.$ $7098.$ $1744.$ 70 $43500.$ $-7300.$ $8980.$ $0.542.$ $16.068.$ $5790.$ 70 $437500.$ $-7700.$ $1870.$ $0.56.$ $16.204.$ $6180.$ $1745.$ 70 $437500.$ $1760.$ $1160.$ 21427		464500.	-4000.	4670.	0.44	5084.	3.842	4699.	7590.	-1494
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		459900.	а — 4600 .	2970.	0.07	3035.	2.664	4486.	6582.	-1053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	457700.	-2200.	3400.	0.02*	3419.	2.279	3320.	5165.	-424
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		454400.	-3300.	1320.	•00-0	1320.	4.919	3688.	7225.	2605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	450400	-4000.	1790.	0.52	2271.	4.517	2862.	6139.	-132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	469700.	19300.	29710.	0.58	30261.	9.224	4868.	11364.	403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		461200.	-8500.	2440.	0.26	2685.	16.008	5793.	16704.	5519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	450900.	-10300.	1340.	0.73	2015.	16.204	6180.	17024.	4709
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		438100.	-12800.	6340.	1.60	7793.	17.938	7098.	18850.	-1744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	445600.	7500.	19960.	1.60	21427.	15.344	7445.	17640.	3713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		438300.	-7300.	8980.	0.42	9362.	11.320	5490.	13034.	-3628.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		430900.	-7400.	4380.	0.58	4897.	6.756	4609.	9166.	-3132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		424700.	-6200.	1870.	0.36	2191.	6.008	3947.	8037.	-354
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		417500.	-7200.	921.	•00-0	921.	3.950	4844.	7623.	-498
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		412700.	-4800.	1350.	0.11*	1446.	4.329	5047.	8032.	1786
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		410100.	-2600.	1560.	0.99	2459.	4.763	3991.	7366.	2306
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		403200.	-6900.	750.	0.08*	819.	8.944	4923.	10624.	2905
71 391500. -4600. 9620. 0.77 10262. 14.646 6601. 71 391300. -200. 20950. 2.34 22900. 16.866 6046. 71 400700. 9400. 36950. 2.49 39067. 15.510 6709. 71 416800. 16100. 45220. 2.13 47084. 11.238 5282. 71 416800. 0. 17150. 4.03 20676. 10.207 6502. 71 413000. -3800. 4340. 2.06 6125. 7.710 4923.		396100.	-7100.	1650.	0.66	2206.	11.612	5256.	12418.	3113
71 391300. -200. 20950. 2.34 22900. 16.866 6046. 71 400700. 9400. 36950. 2.49 39067. 15.510 6709. 71 416800. 16100. 45220. 2.13 47084. 11.238 5282. 71 416800. 0. 17150. 4.03 20676. 10.207 6502. 71 413000. -3800. 4340. 2.06 6125. 7.710 4923.		391500.	-4600.	9620.	0.77	10262.	14.646	. 6601.	15462.	600
71 400700. 9400. 36950. 2.49 39067. 15.510 6709. 1 71 416800. 16100. 45220. 2.13 47084. 11.238 5282. 1 71 416800. 0. 17150. 4.03 20676. 10.207 6502. 1 71 413000. -3800. 4340. 2.06 6125. 7.710 4923.		391300.	-200.	20950.	2.34	22900.	16.866	6046.	16202.	-6898
71 416800. 16100. 45220. 2.13 47084. 11.238 5282. 1 71 416800. 0. 17150. 4.03 20676. 10.207 6502. 1 71 413000. -3800. 4340. 2.06 6125. 7.710 4923.		400700.	9400.	36950.	2.49	39067.	15.510	6709.	16261.	-13405
71 416800. 0. 17150. 4.03 20676. 10.207 6502. 1 71 4130003800. 4340. 2.06 6125. 7.710 4923.		416800.	16100.	45220.	2.13	47084.	11.238	5282.	12499.	-18485
71 4130003800. 4340. 2.06 6125. 7.710 4923.		416800.	.0	17150.	4.03	20676.	10.207	6502.	13087.	-7589
		413000.	-3800.	4340.	2.06	6125.	7.710	4923.	9931.	

LAKE MEREDITH SALINITY STUDY

HYDRO GEO CHEN, INC

Table C.1: Continued

Date	Month-end Chang								
	Stores	Change in Storese	Amarillo Riow	Precip (in.)	Inflow	Pan Evap (in.)	Diver-	Out- flow	Resi- dual
	9 1010	0 101 a 80							
IL VON	445400.	32400.	22140.	2.46	24395.	5.473	4003.	7864.	15869
DEC 71	445400.	•	4070.	0.47	4501.	2.206	3753.	5518.	1017
JAN 72	442000.	-3400.	3910.	0.14*	4037.	4.329	3326.	6425.	-1013
-	438000.	-4000.	1890.	0.05	1935.	4.784	4001.	7358.	1423
	431200.	-6800.	858.	0.20	1036.	10.459	4837.	11705.	3869
-	420900.	-10300.	648.	0.04*	683 .	13.075	6253.	14674.	3691
	420100.	-800.	5430.	2.13	7312.	11.145	5196.	12424.	4312
-	430500	10400.	8790.	3.08	11562.	12.483	6512.	14719.	13557
	472500	42000.	81440.	3.13	84153.	11.471	6376.	13665.	-28487
	503000	30500	56270.	1.72	57976.	12.385	6714.	15689.	-11787
-	542700.	39700.	61630.	0.31	61956.	9.698	5623.	13151.	-9104
	539400	-3300.	17010.	1.36	18438.	7.013	6440.	11995.	-9743
	53 8600	-800.	3010.	1.70	4781.	2.139	1544.	3501.	-2080.
	536100.	-2500.	1900.	0.19	2098.	0.961	4604.	5702.	1104
	53.4300	-1800.	2570.	0.24	2818.	1.844	3944.	5671.	1053
	531200	-3100.	2190.	0.28	2479.	2.993	3837.	6396.	816
	536 BDD	4600	8650	4.37	13202	5.714	4171.	8734.	1132
			1 4940	2.26	17313	7.185	4438.	10119.	1306.
		• • • • •	• • • • • • •			11 407	4005	12724	3760
	537900.	-7400.	1470.	co. 1	- + 0 - 7	176,11			
JUN 73	525400.	-12500.	389.	0.73	. 1137.	1.77. 61	0240.	1/004.	776
JUL 73	520400.	-5000.	14420.	2.60	17063.	13.441	6647.	16600.	4046-
	510900.	-9500.	11940.	0.77	12716.	14.395	6404.	16949.	-5268
	498600.	-12300.	884.	2.53	3393.	8.752	5437.	11890.	-3803
	487900.	-10700.	526.	0.91	1413.	8.364	5074.	11154.	-959.
NOV 73	478300.	-9600.	557.	0.17	720.	5.014	4542.	8271.	-2049
DEC 73	470900.	-7400.	833.	0.50	1308.	3.293	4714.	7266.	-1442
JAN 74	466900.	-4000.	1410.	0.10	1505.	1.691	3967.	5453.	-52
FEB 74	460800.	-6100.	875.	0.20	1063.	5.755	4406.	8558.	1395
MAR 74	458900.	-1900.	5640.	2.50	7973.	8.795	5432.	11534.	1660
APR 74	447600.	-11300.	287.	0.23*	498.	12.120	6844.	14970.	3172
MAY 74	442100.	-5500.	7170.	3.10	9986.	15.486	7397.	17590.	2104.
JUN 74	429600.	-12500.	4260.	2.03	6070.	15.646	8169.	18274.	-296
74	413400.	-16200.	2520.	0.91	3316.	16.853	8957.	19613.	16
ADG 74	434800.	21400.	49770.	7.30	56340.	11.563	6428.	14056.	-20884
SEP 74	431000	-3800.	18960.	0.62	19518.	6.877	5088.	9763.	-13555
OCT 74	451500.	20500.	36500.	4.69	40838.	6.722	4440.	9145.	-11193
NOV 74	447100.	-4400.	3650.	0.31	3934.	4.392	4422.	7589.	-745.
DEC 74	441400	-5700.	1940.	0.44	2340.	3.730	4391.	7109.	-931
ST NAL	438300.	-3100.	3720.	0.15	3856.	2.511	4425.	6368.	-589
	437800.	-500.	3660.	1.12	4668.	1.687	3741.	5147.	-21
	433200	-4600.	1820.	0.19	1989.	6.282	4859.	9120.	2530.
	42.7500	-5700.	2830.	1.05	3766.	9.317	5318.	11473.	2007
NAY 75	41 02.00	-8300.	2450	2.60	4725.	12.865	6884.	15097.	2072
	426300	17000	31670	3 53	34788	12 557	6002	15093	-2695

HYDRO GEO CHEM, INC $\begin{array}{c} -3016 \\ -5487 \\ -5487 \\ -1512 \\ -252 \\ 1399 \\ 1865 \\ 1764 \\ -2512 \\ -2512 \\ -2512 \\ -2512 \\ -512 \\ -1037 \\ -1408 \\ -1621 \\ -287 \\ -2815 \\ -1621 \\ -285 \\ -1234 \\ -1234 \\ -1163 \\ -145 \\ -145 \\ -145 \\ -145 \\ -145 \\ -145 \\ -145 \\ -145 \\ -203 \\ -145 \\ -203 \\ -145 \\ -215 \\ -203 \\ -215 \\ -203 \\ -215 \\ -203 \\ -205 \\ -203 \\$ Resi-dual Out-flow $\begin{array}{c} 15962\\ 12732\\ 12732\\ 12732\\ 6675\\ 6675\\ 6675\\ 6675\\ 10081\\ 10081\\ 10584\\ 110594\\ 110563\\ 6330\\ 6330\\ 6330\\ 5725\\ 5725\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 5525\\ 10751\\ 10761\\ 10761\\ 10767$ Diver-7373. 6432. 6432. 57867. 4758. 4158. 4158. 41790. 41790. 65245. 65245. 65245. 58115. 58115. 58115. 58115. 58132. 66633. 6 Pan Evap (in.) FINAL REPORT Inflow $\begin{array}{c} 10778.\\ 3119.\\ 791.\\ 791.\\ 791.\\ 1541.\\ 1541.\\ 1541.\\ 1541.\\ 1541.\\ 1012.\\ 1730.\\ 1612.\\ 1612.\\ 1612.\\ 1782.\\ 1612.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 1782.\\ 18113.\\ 19603.\\ 19603.\\ 19603.\\ 1003.\\ 1003.\\ 1184.\\$ Precip (in.) $\begin{array}{c} 0.74\\ 0.06\\ 0.06\\ 0.06\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.15\\ 0.15\\ 0.02\\ 0.03\\ 0.05\\$ Amarillo Flow 10100. 1300. 791. 627. 627. 627. 627. 6240. 8240. 8240. 8240. 8240. 1370. 1660. 1650. 1650. 1650. 1650. 1650. 1650. 1650. 1650. 1651. 1651. 1650. 1651. 1650. 1651. 1650. 1651. 1650. 1651. 1650. 1651. 1650 Meredith 1 Change in Storage LAKE MEREDITH SALINITY STUDY $\begin{array}{c} -8200 \\ -8200 \\ -7800 \\ -7800 \\ -5900 \\ -5900 \\ -5900 \\ -5400 \\ -5400 \\ -5400 \\ -5800 \\ -11000 \\ -11000 \\ -11000 \\ -11000 \\ -11000 \\ -11400 \\ -114700 \\ -114700 \\ -114700 \\ -114700 \\ -114700 \\ -114700 \\ -5600 \\ -114700 \\ -5600 \\ -76$ Table C.1: Continued Month-end Storage Lake 364400. 361100. 349200. 349200. 349200. 342200. 342200. 35100. 35100. 35100. 35100. 334300. 334300. 327300. 327300. 321800. 311200. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 31000. 3100 445700. 430600. 418400. 410600. 04500 198600 192500 185500 185500 185500 174300 174300 174300 153500 114400 109700 104100 81600 69000 49000 75100 Date MAR APR JUL JUL JUL JUL JAN OCT JAN JUL JUL JUL DBC OCT JAN AUG SEP SEP JAN AUG SEP AUG AUG AUG AUG AUG AUG AND SEP 間 3

LAKB MEREDITH SALINITY STUDY

FINAL REPORT

HYDRO GEO CHEM, INC

Table C.1: Continued

	Storage	Storage	Flow	(in.)	AOTIUT	ran svap (in.)	biver- sions	Cut- flow	Kesi- dual
11 TAN	0 290700.	-5800 ;	1680.	4.95	5186.	10.315	6756.	12140.	1154
79	9 296500.	5800.	18960.	3.97	21805.	11.328	6473.	12429.	-3576.
-	9 285600.	-10900.	332.	0.93	983.	15.539	8365.	16246.	4363
	9 294900.	9300.	15370.	3.20	17663.	11.930	7499.	13757.	5394.
-	9 290400.	-4500.	1940.	1.50	3003.	9.967	6847.	12059.	4556
0CT 79	0 278400.	-12000.	121.	2.43	1802.	10.274	7314.	12552.	-1250
POV 79	274800.	-3600.	5080.	0.44	5381.	3.103	5211.	6956.	-2025.
DEC 79	0 268400.	-6400.	950.	0.14	1045.	4.705	5642.	8122.	678.
	•••	-1900.	5330.	1.12	6086.	2.325	4979.	6335.	-1651
	••	4300.	14920.	0.42	15204.	3.323	5059.	6886.	-4017
	•••	-1500.	2550.	2.67	4352.	7.395	6035.	9786.	3934.
	•••	-9200.	1050.	1.04	1743.	9.207	6374.	10925.	-19
	•••	6200.	16890.	4.31	19799.	9.839	6655.	11561.	-2038.
-	•••	-4100.	6870.	3.15	8970.	15.154	8234.	15560.	2490.
JUL 80	•••	-17700.	80.	0.67	510.	17.926	9804.	18100.	-110.
AUG 80		-8700.	5940.	1.55	6909.	16.358	9004.	16399.	790.
SEP 80	0 223700.	-12100.	2520.	0.43	2782.	ି 9.882	7210.	11650.	-3232
0CT 80	0 205100.	-18600.	35.	0.26	189.	8.974	6120.	10062.	-8727
NOV 80	198300.	-6800.	164.	0.41	403.	3.667	5520.	7240.	36.
DEC 80	192900.	-5400.	1080.	0.66	1460.	2.982	5660.	7079.	220.
JAN 81	187700.	-5200.	537.	0.15	622.	2.501	4780.	5988.	166.
FEB 81	•••	-5100.	247.	0.10	303.	5.448	4480.	6822.	1419.
WAR 81	179200.	-3400.	816.	1.98	1905.	6.822	4980.	7816.	2511.
APR 81		-7300.	219.	1.10	815.	10.646	5940.	10183.	2068.
WAY 81		-5100.	2780.	2.88	4316.	10.390	6840.	10922.	1506.
JUN 81		4800.	18840.	3.12	20530.	14.119	7820.	13380.	-2350.
JUL 81		600.	14340.	-1.41	15104.	13.946	8800.	14294.	-210.
AUG 81		128100.	184900.	4.25	188052.	10.536	6730.	12482.	-47470.
SEP 81		34100.	50980.	2.70	53095.	. 7.696	5940.	10458.	-8537.
OCT 81		- 000 -	7740.	2.03	9330.	5.643	5370.	8763.	-1468.
NOV 81		-4100.	2670.	1.35	3716.	3.586	5220.	7461.	-356.
DEC 81	324100.	-5300.	2070.	0.06	2117.	2.934	5700.	7587.	170.
		-6000.	1710.	0.03	1733.	5.213	5540.	8630.	897.
FEB 82		-3600.	1330.	0.37	1611.	4.827	4750.	7601.	2391.
-	309000.	-5500.	1290.	0.58	1725.	8.028	5820.	10320.	3095
APR 82	300700.	-8300.	1140.	0.38	1422.	10.506	5800.	11537.	1815.
WAY 82	•••	-1000.	3830.	2.85	5944.	9.022	4330.	9296.	2353
	329400.	29700.	48090.	6.20	52895.	10.614	5230.	11283.	-11912
	3	61000.	78670.	7.48	85153.	12.588	7540.	15507.	-8646
		32200.	38690.	0.57	39208.	11.600	8050.	15772.	8764.
SEP 82	427800.	5200.	23100.	1.51	24484.	9.576	7060.	13554.	-5730.

1000

 $\left[\right]$